psi4.driver.opt¶
-
psi4.driver.
opt
(name, **kwargs)¶ Function to perform a geometry optimization.
Aliases: opt() Returns: float – Total electronic energy of optimized structure in Hartrees. Returns: (float, Wavefunction
) – energy and wavefunction when return_wfn specified.Raises: psi4.ConvergenceError if |optking__geom_maxiter| exceeded without reaching geometry convergence. PSI variables: Parameters: - name (string) –
'scf'
||'mp2'
||'ci5'
|| etc.First argument, usually unlabeled. Indicates the computational method to be applied to the database. May be any valid argument to
energy()
. - molecule (molecule) –
h2o
|| etc.The target molecule, if not the last molecule defined.
- return_wfn (boolean) –
'on'
|| \(\Rightarrow\)'off'
\(\Leftarrow\)Indicate to additionally return the
Wavefunction
calculation result as the second element (after float energy) of a tuple. - func (function) –
\(\Rightarrow\)
gradient
\(\Leftarrow\) ||energy
||cbs
Indicates the type of calculation to be performed on the molecule. The default dertype accesses
'gradient'
or'energy'
, while'cbs'
performs a multistage finite difference calculation. If a nested series of python functions is intended (see Function Intercalls), use keywordopt_func
instead offunc
. - mode (string) –
\(\Rightarrow\)
'continuous'
\(\Leftarrow\) ||'sow'
||'reap'
For a finite difference of energies optimization, indicates whether the calculations required to complete the optimization are to be run in one file (
'continuous'
) or are to be farmed out in an embarrassingly parallel fashion ('sow'
/'reap'
). For the latter, run an initial job with'sow'
and follow instructions in its output file. For maximum flexibility,return_wfn
is always on in'reap'
mode. - dertype (dertype) –
'gradient'
||'energy'
Indicates whether analytic (if available) or finite difference optimization is to be performed.
- hessian_with (string) –
'scf'
||'mp2'
|| etc.Indicates the computational method with which to perform a hessian analysis to guide the geometry optimization.
Warning
Optimizations where the molecule is specified in Z-matrix format with dummy atoms will result in the geometry being converted to a Cartesian representation.
Note
Analytic gradients area available for all methods in the table below. Optimizations with other methods in the energy table proceed by finite differences.
name calls method efp efp-only optimizations scf Hartree–Fock (HF) or density functional theory (DFT) [manual] hf HF self consistent field (SCF) [manual] dcft density cumulant functional theory [manual] mp2 2nd-order Møller–Plesset perturbation theory (MP2) [manual] [details] mp3 3rd-order Møller–Plesset perturbation theory (MP3) [manual] [details] mp2.5 average of MP2 and MP3 [manual] [details] omp2 orbital-optimized second-order MP perturbation theory [manual] omp3 orbital-optimized third-order MP perturbation theory [manual] omp2.5 orbital-optimized MP2.5 [manual] lccd Linear CCD [manual] [details] olccd orbital optimized LCCD [manual] ccd coupled cluster doubles (CCD) [manual] ccsd coupled cluster singles and doubles (CCSD) [manual] [details] ccsd(t) CCSD with perturbative triples (CCSD(T)) [manual] [details] eom-ccsd equation of motion (EOM) CCSD [manual] name calls method DFT [manual] b3lyp B3LYP Hybrid-GGA Exchange-Correlation Functional (VWN1-RPA) b3lyp-d b3lyp-d3 b3lyp-d3bj b3lyp-d3m b3lyp-d3mbj b3lyp5 B3LYP5 Hybrid-GGA Exchange-Correlation Functional (VWN5) b3_x Becke88 GGA Exchange (B3LYP weighting) b86bpbe B86BPBE GGA Exchange-Correlation Functional b88_x Becke88 GGA Exchange b97-0 B97-0 Hybrid-GGA Exchange-Correlation Functional b97-1 B97-1 Hybrid-GGA Exchange-Correlation Functional b97-2 B97-2 Hybrid-GGA Exchange-Correlation Functional b97-d b97-d3 b97-d3bj b97-d3m b97-d3mbj blyp BLYP GGA Exchange-Correlation Functional blyp-d blyp-d3 blyp-d3bj blyp-d3m blyp-d3mbj bp86 BP86 GGA Exchange-Correlation Functional bp86-d bp86-d3 bp86-d3bj bp86-d3m bp86-d3mbj ft97 FT97 GGA Exchange-Correlation Functional ft97b_x Filitov and Theil 1997 Exchange ft97_c FT97 Correlation (Involves Ei functions) hcth HCTH Pure-GGA Exchange-Correlation Functional hcth120 HCTH120 Pure-GGA Exchange-Correlation Functional hcth120-d3 hcth120-d3bj hcth147 HCTH147 Pure-GGA Exchange-Correlation Functional hcth407 HCTH407 Pure-GGA Exchange-Correlation Functional hf Hartree Fock as Roothan prescribed hf+d hf-d3 hf-d3bj hf3c Hartree Fock as Roothan prescribed plus 3C hf_x Hartree-Fock Exchange Functional lyp_c LYP Correlation m05 Heavily Parameterized Hybrid Meta-GGA XC Functional m05-2x Heavily Parameterized Hybrid Meta-GGA XC Functional m05-2x-d3 m05-d3 p86_c P86 Correlation (PZ81 LSDA + P86 GGA) pbe PBE GGA Exchange-Correlation Functional pbe-d pbe-d3 pbe-d3bj pbe-d3m pbe-d3mbj pbe0 PBE0 Hybrid GGA Exchange-Correlation Functional pbe0-d pbe0-d3 pbe0-d3bj pbe0-d3m pbe0-d3mbj pbea_c New Implementation of PBEC in wPBEc-sr. pbeh3c PBE-3C Hybrid GGA Exchange-Correlation Functional pbesol_x PBEsol GGA Exchange Hole (Parameter Free) pbe_c PBE Correlation pbe_x PBE GGA Exchange Hole (Parameter Free) pw86pbe PW86PBE GGA Exchange-Correlation Functional pw91 PW91 GGA Exchange-Correlation Functional pw91_c PW91 Correlation pw91_x PW91 Parameterized GGA Exchange pw92a_c New Implementation of PW92C in wPBEc-sr. pw92_c pz81_c PZ81 Correlation rpbe_x RPBE GGA Exchange Hole (Parameter Free) sogga Second Order GGA Exchange-Correlation Functional sogga_x Second Order GGA Exchange Hole (Parameter Free) svwn SVWN3 (RPA) LSDA Functional s_x Slater LSDA Exchange vwn3rpa_c VWN3 LSDA Correlation, RPA Parameters, VWN1 Spin Polarization vwn3_c VWN3 LSDA Correlation, QMC Parameters, VWN1 Spin Polarization vwn5rpa_c VWN5 LSDA Correlation, RPA Parameters, VWN5 Spin Polarization vwn5_c VWN5 LSDA Correlation, QMC Parameters, VWN5 Spin Polarization dldf Dispersionless Hybrid Meta-GGA XC Functional dldf+d Dispersionless Hybrid Meta-GGA XC Functional dldf+d09 Dispersionless Hybrid Meta-GGA XC Functional name calls method in Stanton and Gauss’s CFOUR program [manual] c4-scf Hartree–Fock (HF) c4-mp2 2nd-order Møller–Plesset perturbation theory (non-density-fitting) (MP2) c4-mp3 3rd-order Møller–Plesset perturbation theory (MP3) c4-mp4(sdq) 4th-order MP perturbation theory (MP4) less triples c4-mp4 full MP4 c4-cc2 approximate coupled cluster singles and doubles (CC2) c4-ccsd coupled cluster singles and doubles (CCSD) c4-cc3 approximate CC singles, doubles, and triples (CC3) c4-ccsd(t) CCSD with perturbative triples (CCSD(T)) c4-ccsdt coupled cluster singles, doubles, and triples (CCSDT) cfour expert full control over cfour program Examples: 1 2
>>> # [1] Analytic hf optimization >>> optimize('hf')
1 2 3 4
>>> # [2] Finite difference mp5 optimization with gradient >>> # printed to output file >>> e, wfn = opt('mp5', return_wfn='yes') >>> wfn.gradient().print_out()
1 2 3
>>> # [3] Forced finite difference hf optimization run in >>> # embarrassingly parallel fashion >>> optimize('hf', dertype='energy', mode='sow')
1 2
>>> # [4] Can automatically perform complete basis set extrapolations >>> optimize('MP2/cc-pV([D,T]+d)Z')
1 2 3 4
>>> # [5] Can automatically perform delta corrections that include extrapolations >>> # even with a user-defined extrapolation formula. See sample inputs named >>> # cbs-xtpl* for more examples of this input style >>> optimize("MP2/aug-cc-pv([d,t]+d)z + d:ccsd(t)/cc-pvdz", corl_scheme=myxtplfn_2)
- name (string) –