Source code for psi4.driver.p4util.text

#
# @BEGIN LICENSE
#
# Psi4: an open-source quantum chemistry software package
#
# Copyright (c) 2007-2018 The Psi4 Developers.
#
# The copyrights for code used from other parties are included in
# the corresponding files.
#
# This file is part of Psi4.
#
# Psi4 is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3.
#
# Psi4 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with Psi4; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# @END LICENSE
#

from __future__ import print_function
"""Module with utility classes and functions related
to data tables and text.

"""
import sys

from psi4 import core
from psi4.driver import constants
from .exceptions import *

[docs]class Table(object): """Class defining a flexible Table object for storing data.""" def __init__(self, rows=(), row_label_width=10, row_label_precision=4, cols=(), width=16, precision=10): self.row_label_width = row_label_width self.row_label_precision = row_label_precision self.width = width self.precision = precision self.rows = rows if isinstance(cols, str): self.cols = (cols,) else: self.cols = cols self.labels = [] self.data = []
[docs] def format_label(self): """Function to pad the width of Table object labels.""" #str = lambda x: (('%%%d.%df' % (self.row_label_width, self.row_label_precision)) % x) str = lambda x: (('%%%ds' % (self.row_label_width)) % x) return " ".join(map(str, self.labels))
[docs] def format_values(self, values): """Function to pad the width of Table object data cells.""" str = lambda x: (('%%%d.%df' % (self.width, self.precision)) % x) return " ".join(map(str, values))
def __getitem__(self, value): self.labels.append(value) return self def __setitem__(self, name, value): self.labels.append(name) label = self.format_label() self.labels = [] if isinstance(value, list): self.data.append((label, value)) else: self.data.append((label, [value]))
[docs] def save(self, file): """Function to save string of the Table object to *file*.""" import pickle pickle_str = pickle.dumps(self) fileobj = open(file, "w") fileobj.write(str(self)) fileobj.close()
def __str__(self): rowstr = lambda x: '%%%ds' % self.row_label_width % x colstr = lambda x: '%%%ds' % self.width % x lines = [] table_header = "" if isinstance(self.rows, str): table_header += "%%%ds" % self.row_label_width % self.rows else: table_header += " ".join(map(rowstr, self.rows)) table_header += " ".join(map(colstr, self.cols)) lines.append(table_header) for datarow in self.data: #print datarow row_data = datarow[0] row_data += self.format_values(datarow[1]) lines.append(row_data) return "\n".join(lines) + "\n"
[docs] def copy(self): """Function to return a copy of the Table object.""" import copy return copy.deepcopy(self)
[docs] def absolute_to_relative(self, Factor=constants.hartree2kcalmol): """Function to shift the data of each column of the Table object such that the lowest value is zero. A scaling factor of *Factor* is applied. """ import copy if len(self.data) == 0: return current_min = list(copy.deepcopy(self.data[0][1])) for datarow in self.data: for col in range(0, len(datarow[1])): if current_min[col] > datarow[1][col]: current_min[col] = datarow[1][col] for datarow in self.data: for col in range(0, len(datarow[1])): #print datarow[1][col] datarow[1][col] = (datarow[1][col] - current_min[col]) * Factor
[docs] def scale(self, Factor=constants.hartree2kcalmol): """Function to apply a scaling factor *Factor* to the data of the Table object. """ if len(self.data) == 0: return for datarow in self.data: for col in range(0, len(datarow[1])): #print datarow[1][col] datarow[1][col] = datarow[1][col] * Factor
[docs]def levenshtein(seq1, seq2): """Function to compute the Levenshtein distance between two strings.""" oneago = None thisrow = list(range(1, len(seq2) + 1)) + [0] for x in range(len(seq1)): twoago, oneago, thisrow = oneago, thisrow, [0] * len(seq2) + [x + 1] for y in range(len(seq2)): delcost = oneago[y] + 1 addcost = thisrow[y - 1] + 1 subcost = oneago[y - 1] + (seq1[x] != seq2[y]) thisrow[y] = min(delcost, addcost, subcost) return thisrow[len(seq2) - 1]
[docs]def find_approximate_string_matches(seq1,options,max_distance): """Function to compute approximate string matches from a list of options.""" matches = [] for seq2 in options: distance = levenshtein(seq1,seq2) if distance <= max_distance: matches.append(seq2) return matches