#
# @BEGIN LICENSE
#
# Psi4: an open-source quantum chemistry software package
#
# Copyright (c) 2007-2018 The Psi4 Developers.
#
# The copyrights for code used from other parties are included in
# the corresponding files.
#
# This file is part of Psi4.
#
# Psi4 is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3.
#
# Psi4 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with Psi4; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# @END LICENSE
#
from __future__ import print_function
from __future__ import absolute_import
import numpy as np
from psi4 import core
from psi4.driver import p4util
from psi4.driver.p4util.exceptions import *
from psi4.driver.procrouting.dft_funcs import functionals
from psi4.driver.procrouting.dft_funcs import build_superfunctional_from_dictionary
def scf_set_reference_local(name, is_dft=False):
"""
Figures out the correct SCF reference to set locally
"""
optstash = p4util.OptionsState(
['SCF_TYPE'],
['SCF', 'REFERENCE'])
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DF')
# Alter reference name if needed
user_ref = core.get_option('SCF', 'REFERENCE')
sup = build_superfunctional_from_dictionary(functionals[name], 1, 1, True)[0]
if sup.needs_xc() or is_dft:
if (user_ref == 'RHF'):
core.set_local_option('SCF', 'REFERENCE', 'RKS')
elif (user_ref == 'UHF'):
core.set_local_option('SCF', 'REFERENCE', 'UKS')
elif (user_ref == 'ROHF'):
raise ValidationError('ROHF reference for DFT is not available.')
elif (user_ref == 'CUHF'):
raise ValidationError('CUHF reference for DFT is not available.')
# else we are doing HF and nothing needs to be overloaded
return optstash
def oeprop_validator(prop_list):
"""
Validations a list of OEProp computations. Throws if not found
"""
oeprop_methods = core.OEProp.valid_methods
if not len(prop_list):
raise ValidationnError("OEProp: No properties specified!")
for prop in prop_list:
prop = prop.upper()
if 'MULTIPOLE(' in prop: continue
if prop not in oeprop_methods:
alt_method_name = p4util.text.find_approximate_string_matches(prop,
oeprop_methods, 2)
alternatives = ""
if len(alt_method_name) > 0:
alternatives = " Did you mean? %s" % (" ".join(alt_method_name))
raise ValidationError("OEProp: Feature '%s' is not recognized. %s" % (prop, alternatives))
[docs]def check_iwl_file_from_scf_type(scf_type, wfn):
"""
Ensures that a IWL file has been written based on input SCF type.
"""
if scf_type in ['DF', 'DISK_DF', 'MEM_DF', 'CD', 'PK', 'DIRECT']:
mints = core.MintsHelper(wfn.basisset())
if core.get_global_option("RELATIVISTIC") in ["X2C", "DKH"]:
rel_bas = core.BasisSet.build(wfn.molecule(), "BASIS_RELATIVISTIC",
core.get_option("SCF", "BASIS_RELATIVISTIC"),
"DECON", core.get_global_option('BASIS'),
puream=wfn.basisset().has_puream())
mints.set_rel_basisset(rel_bas)
mints.set_print(1)
mints.integrals()
def check_non_symmetric_jk_density(name):
"""
Ensure non-symmetric density matrices are supported for the selected JK routine.
"""
scf_type = core.get_global_option('SCF_TYPE')
supp_jk_type = ['DF', 'DISK_DF', 'MEM_DF', 'CD', 'PK', 'DIRECT', 'OUT_OF_CORE']
supp_string = ', '.join(supp_jk_type[:-1]) + ', or ' + supp_jk_type[-1] + '.'
if scf_type not in supp_jk_type:
raise ValidationError("Method %s: Requires support for non-symmetric density matrices.\n"
" Please set SCF_TYPE to %s" % (name, supp_string))
def check_disk_df(name, optstash):
optstash.add_option(['SCF_TYPE'])
# Alter default algorithm
if not core.has_global_option_changed('SCF_TYPE'):
core.set_global_option('SCF_TYPE', 'DISK_DF')
core.print_out(""" Method '%s' requires SCF_TYPE = DISK_DF, setting.\n""" % name)
elif core.get_global_option('SCF_TYPE') == "DF":
core.set_global_option('SCF_TYPE', 'DISK_DF')
core.print_out(""" Method '%s' requires SCF_TYPE = DISK_DF, setting.\n""" % name)
else:
if core.get_global_option('SCF_TYPE') != "DISK_DF":
raise ValidationError(" %s requires SCF_TYPE = DISK_DF, please use SCF_TYPE = DF to automatically choose the correct DFJK implementation." % name)
def print_ci_results(ciwfn, rname, scf_e, ci_e, print_opdm_no=False):
"""
Printing for all CI Wavefunctions
"""
# Print out energetics
core.print_out("\n ==> Energetics <==\n\n")
core.print_out(" SCF energy = %20.15f\n" % scf_e)
if "CI" in rname:
core.print_out(" Total CI energy = %20.15f\n" % ci_e)
elif "MP" in rname:
core.print_out(" Total MP energy = %20.15f\n" % ci_e)
elif "ZAPT" in rname:
core.print_out(" Total ZAPT energy = %20.15f\n" % ci_e)
else:
core.print_out(" Total MCSCF energy = %20.15f\n" % ci_e)
# Nothing to be done for ZAPT or MP
if ("MP" in rname) or ("ZAPT" in rname):
core.print_out("\n")
return
# Initial info
ci_nroots = core.get_option("DETCI", "NUM_ROOTS")
irrep_labels = ciwfn.molecule().irrep_labels()
# Grab the D-vector
dvec = ciwfn.D_vector()
dvec.init_io_files(True)
for root in range(ci_nroots):
core.print_out("\n ==> %s root %d information <==\n\n" % (rname, root))
# Print total energy
root_e = core.get_variable("CI ROOT %d TOTAL ENERGY" % (root))
core.print_out(" %s Root %d energy = %20.15f\n" % (rname, root, root_e))
# Print natural occupations
if print_opdm_no:
core.print_out("\n Active Space Natural occupation numbers:\n\n")
occs_list = []
r_opdm = ciwfn.get_opdm(root, root, "SUM", False)
for h in range(len(r_opdm.nph)):
if 0 in r_opdm.nph[h].shape:
continue
nocc, rot = np.linalg.eigh(r_opdm.nph[h])
for e in nocc:
occs_list.append((e, irrep_labels[h]))
occs_list.sort(key=lambda x: -x[0])
cnt = 0
for value, label in occs_list:
value, label = occs_list[cnt]
core.print_out(" %4s % 8.6f" % (label, value))
cnt += 1
if (cnt % 3) == 0:
core.print_out("\n")
if (cnt % 3):
core.print_out("\n")
# Print CIVector information
ciwfn.print_vector(dvec, root)
# True to keep the file
dvec.close_io_files(True)
def prepare_sapt_molecule(sapt_dimer, sapt_basis):
"""
Prepares a dimer molecule for a SAPT computations. Returns the dimer, monomerA, and monomerB.
"""
# Shifting to C1 so we need to copy the active molecule
sapt_dimer = sapt_dimer.clone()
if sapt_dimer.schoenflies_symbol() != 'c1':
core.print_out(' SAPT does not make use of molecular symmetry, further calculations in C1 point group.\n')
sapt_dimer.reset_point_group('c1')
sapt_dimer.fix_orientation(True)
sapt_dimer.fix_com(True)
sapt_dimer.update_geometry()
else:
sapt_dimer.update_geometry() # make sure since mol from wfn, kwarg, or P::e
sapt_dimer.fix_orientation(True)
sapt_dimer.fix_com(True)
nfrag = sapt_dimer.nfragments()
if nfrag == 3:
# Midbond case
if sapt_basis == 'monomer':
raise ValidationError("SAPT basis cannot both be monomer centered and have midbond functions.")
midbond = sapt_dimer.extract_subsets(3)
ztotal = 0
for n in range(midbond.natom()):
ztotal += midbond.Z(n)
if ztotal > 0:
raise ValidationError("SAPT third monomr must be a midbond function (all ghosts).")
ghosts = ([2, 3], [1, 3])
elif nfrag == 2:
# Classical dimer case
ghosts = (2, 1)
else:
raise ValidationError('SAPT requires active molecule to have 2 fragments, not %s.' % (nfrag))
if sapt_basis == 'dimer':
monomerA = sapt_dimer.extract_subsets(1, ghosts[0])
monomerA.set_name('monomerA')
monomerB = sapt_dimer.extract_subsets(2, ghosts[1])
monomerB.set_name('monomerB')
elif sapt_basis == 'monomer':
monomerA = sapt_dimer.extract_subsets(1)
monomerA.set_name('monomerA')
monomerB = sapt_dimer.extract_subsets(2)
monomerB.set_name('monomerB')
else:
raise ValidationError("SAPT basis %s not recognized" % sapt_basis)
return (sapt_dimer, monomerA, monomerB)