Single-Point Energy — energy()
¶
- Psi4 Native Energy Methods
- Psi4 Native DFT Energy Methods
- MRCC Interfaced Energy Methods
- CFOUR Interfaced Energy Methods
-
psi4.
energy
(name[, molecule, return_wfn, restart_file])[source]¶ Function to compute the single-point electronic energy.
Returns: float – Total electronic energy in Hartrees. SAPT & EFP return interaction energy. Returns: (float, Wavefunction
) – energy and wavefunction when return_wfn specified.PSI variables: Parameters: - name (string) –
'scf'
||'mp2'
||'ci5'
|| etc.First argument, usually unlabeled. Indicates the computational method to be applied to the system.
- molecule (molecule) –
h2o
|| etc.The target molecule, if not the last molecule defined.
- return_wfn (boolean) –
'on'
|| \(\Rightarrow\)'off'
\(\Leftarrow\)Indicate to additionally return the
Wavefunction
calculation result as the second element (after float energy) of a tuple. - restart_file (string) –
['file.1, file.32]
||./file
|| etc.Binary data files to be renamed for calculation restart.
name calls method efp effective fragment potential (EFP) [manual] scf Hartree–Fock (HF) or density functional theory (DFT) [manual] hf HF self consistent field (SCF) [manual] hf3c HF with dispersion, BSSE, and basis set corrections [manual] pbeh3c PBEh with dispersion, BSSE, and basis set corrections [manual] dcft density cumulant functional theory [manual] mp2 2nd-order Møller–Plesset perturbation theory (MP2) [manual] [details] mp3 3rd-order Møller–Plesset perturbation theory (MP3) [manual] [details] fno-mp3 MP3 with frozen natural orbitals [manual] mp2.5 average of MP2 and MP3 [manual] [details] mp4(sdq) 4th-order MP perturbation theory (MP4) less triples [manual] fno-mp4(sdq) MP4 (less triples) with frozen natural orbitals [manual] mp4 full MP4 [manual] [details] fno-mp4 full MP4 with frozen natural orbitals [manual] mpn nth-order Møller–Plesset (MP) perturbation theory [manual] zaptn nth-order z-averaged perturbation theory (ZAPT) [manual] omp2 orbital-optimized second-order MP perturbation theory [manual] scs-omp2 spin-component scaled OMP2 [manual] scs(n)-omp2 a special version of SCS-OMP2 for nucleobase interactions [manual] scs-omp2-vdw a special version of SCS-OMP2 (from ethene dimers) [manual] sos-omp2 spin-opposite scaled OMP2 [manual] sos-pi-omp2 A special version of SOS-OMP2 for pi systems [manual] omp3 orbital-optimized third-order MP perturbation theory [manual] scs-omp3 spin-component scaled OMP3 [manual] scs(n)-omp3 a special version of SCS-OMP3 for nucleobase interactions [manual] scs-omp3-vdw a special version of SCS-OMP3 (from ethene dimers) [manual] sos-omp3 spin-opposite scaled OMP3 [manual] sos-pi-omp3 A special version of SOS-OMP3 for pi systems [manual] omp2.5 orbital-optimized MP2.5 [manual] lccsd, cepa(0) coupled electron pair approximation variant 0 [manual] [details] fno-lccsd, fno-cepa(0) CEPA(0) with frozen natural orbitals [manual] cepa(1) coupled electron pair approximation variant 1 [manual] fno-cepa(1) CEPA(1) with frozen natural orbitals [manual] cepa(3) coupled electron pair approximation variant 3 [manual] fno-cepa(3) CEPA(3) with frozen natural orbitals [manual] acpf averaged coupled-pair functional [manual] fno-acpf ACPF with frozen natural orbitals [manual] aqcc averaged quadratic coupled cluster [manual] fno-aqcc AQCC with frozen natural orbitals [manual] qcisd quadratic CI singles doubles (QCISD) [manual] fno-qcisd QCISD with frozen natural orbitals [manual] lccd Linear CCD [manual] [details] fno-lccd LCCD with frozen natural orbitals [manual] olccd orbital optimized LCCD [manual] cc2 approximate coupled cluster singles and doubles (CC2) [manual] ccd coupled cluster doubles (CCD) [manual] ccsd coupled cluster singles and doubles (CCSD) [manual] [details] bccd Brueckner coupled cluster doubles (BCCD) [manual] fno-ccsd CCSD with frozen natural orbitals [manual] qcisd(t) QCISD with perturbative triples [manual] fno-qcisd(t) QCISD(T) with frozen natural orbitals [manual] ccsd(t) CCSD with perturbative triples (CCSD(T)) [manual] [details] ccsd(at) CCSD with asymmetric perturbative triples (CCSD(AT)) [manual] [details] bccd(t) BCCD with perturbative triples [manual] fno-ccsd(t) CCSD(T) with frozen natural orbitals [manual] cc3 approximate CC singles, doubles, and triples (CC3) [manual] ccenergy expert full control over ccenergy module dfocc expert full control over dfocc module cisd configuration interaction (CI) singles and doubles (CISD) [manual] [details] fno-cisd CISD with frozen natural orbitals [manual] cisdt CI singles, doubles, and triples (CISDT) [manual] cisdtq CI singles, doubles, triples, and quadruples (CISDTQ) [manual] cin nth-order CI [manual] fci full configuration interaction (FCI) [manual] detci expert full control over detci module casscf complete active space self consistent field (CASSCF) [manual] rasscf restricted active space self consistent field (RASSCF) [manual] mcscf multiconfigurational self consistent field (SCF) [manual] psimrcc Mukherjee multireference coupled cluster (Mk-MRCC) [manual] dmrg-scf density matrix renormalization group SCF [manual] dmrg-caspt2 density matrix renormalization group CASPT2 [manual] dmrg-ci density matrix renormalization group CI [manual] sapt0 0th-order symmetry adapted perturbation theory (SAPT) [manual] ssapt0 0th-order SAPT with special exchange scaling [manual] fisapt0 0th-order functional and/or intramolecular SAPT [manual] sapt2 2nd-order SAPT, traditional definition [manual] sapt2+ SAPT including all 2nd-order terms [manual] sapt2+(3) SAPT including perturbative triples [manual] sapt2+3 SAPT including all 3rd-order terms [manual] sapt2+(ccd) SAPT2+ with CC-based dispersion [manual] sapt2+(3)(ccd) SAPT2+(3) with CC-based dispersion [manual] sapt2+3(ccd) SAPT2+3 with CC-based dispersion [manual] sapt2+dmp2 SAPT including all 2nd-order terms and MP2 correction [manual] sapt2+(3)dmp2 SAPT including perturbative triples and MP2 correction [manual] sapt2+3dmp2 SAPT including all 3rd-order terms and MP2 correction [manual] sapt2+(ccd)dmp2 SAPT2+ with CC-based dispersion and MP2 correction [manual] sapt2+(3)(ccd)dmp2 SAPT2+(3) with CC-based dispersion and MP2 correction [manual] sapt2+3(ccd)dmp2 SAPT2+3 with CC-based dispersion and MP2 correction [manual] sapt0-ct 0th-order SAPT plus charge transfer (CT) calculation [manual] sapt2-ct SAPT2 plus CT [manual] sapt2+-ct SAPT2+ plus CT [manual] sapt2+(3)-ct SAPT2+(3) plus CT [manual] sapt2+3-ct SAPT2+3 plus CT [manual] sapt2+(ccd)-ct SAPT2+(CCD) plus CT [manual] sapt2+(3)(ccd)-ct SAPT2+(3)(CCD) plus CT [manual] sapt2+3(ccd)-ct SAPT2+3(CCD) plus CT [manual] adc 2nd-order algebraic diagrammatic construction (ADC) [manual] eom-cc2 EOM-CC2 [manual] eom-ccsd equation of motion (EOM) CCSD [manual] eom-cc3 EOM-CC3 [manual] Examples: 1 2
>>> # [1] Coupled-cluster singles and doubles calculation with psi code >>> energy('ccsd')
1 2 3 4 5
>>> # [2] Charge-transfer SAPT calculation with scf projection from small into >>> # requested basis, with specified projection fitting basis >>> set basis_guess true >>> set df_basis_guess jun-cc-pVDZ-JKFIT >>> energy('sapt0-ct')
1 2
>>> # [3] Arbitrary-order MPn calculation >>> energy('mp7')
1 2 3 4 5 6 7 8 9
>>> # [4] Converge scf as singlet, then run detci as triplet upon singlet reference >>> # Note that the integral transformation is not done automatically when detci is run in a separate step. >>> molecule H2 {\n0 1\nH\nH 1 0.74\n} >>> set basis cc-pVDZ >>> set reference rohf >>> scf_e, scf_wfn = energy('scf', return_wfn=True) >>> H2.set_multiplicity(3) >>> core.MintsHelper(scf_wfn.basisset()).integrals() >>> energy('detci', ref_wfn=scf_wfn)
1 2 3 4 5
>>> # [5] Run two CI calculations, keeping the integrals generated in the first one. >>> molecule ne {\nNe\n} >>> set basis cc-pVDZ >>> cisd_e, cisd_wfn = energy('cisd', return_wfn=True) >>> energy('fci', ref_wfn=cisd_wfn)
1 2
>>> # [6] Can automatically perform complete basis set extrapolations >>> energy("CCSD/cc-pV[DT]Z")
1 2 3 4
>>> # [7] Can automatically perform delta corrections that include extrapolations >>> # even with a user-defined extrapolation formula. See sample inputs named >>> # cbs-xtpl* for more examples of this input style >>> energy("MP2/aug-cc-pv([d,t]+d)z + d:ccsd(t)/cc-pvdz", corl_scheme=myxtplfn_2)
- name (string) –