#
# @BEGIN LICENSE
#
# Psi4: an open-source quantum chemistry software package
#
# Copyright (c) 2007-2022 The Psi4 Developers.
#
# The copyrights for code used from other parties are included in
# the corresponding files.
#
# This file is part of Psi4.
#
# Psi4 is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3.
#
# Psi4 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with Psi4; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# @END LICENSE
#
__all__ = [
"AtomicComputer",
"BaseComputer",
"EnergyGradientHessianWfnReturn",
]
import abc
import copy
import logging
from typing import Any, Dict, Optional, Tuple, Union
from pydantic import Field, validator
import qcelemental as qcel
from qcelemental.models import DriverEnum, AtomicInput, AtomicResult
qcel.models.molecule.GEOMETRY_NOISE = 13 # need more precision in geometries for high-res findif
import qcengine as qcng
from psi4 import core
logger = logging.getLogger(__name__)
EnergyGradientHessianWfnReturn = Union[float, core.Matrix, Tuple[Union[float, core.Matrix], core.Wavefunction]]
class BaseComputer(qcel.models.ProtoModel):
@abc.abstractmethod
def compute(self):
pass
@abc.abstractmethod
def plan(self):
pass
class Config(qcel.models.ProtoModel.Config):
extra = "allow"
allow_mutation = True
[docs]class AtomicComputer(BaseComputer):
"""Computer for analytic single-geometry computations."""
molecule: Any = Field(..., description="The molecule to use in the computation.")
basis: str = Field(..., description="The quantum chemistry basis set to evaluate (e.g., 6-31g, cc-pVDZ, ...).")
method: str = Field(..., description="The quantum chemistry method to evaluate (e.g., B3LYP, MP2, ...).")
driver: DriverEnum = Field(..., description="The resulting type of computation: energy, gradient, hessian, properties."
"Note for finite difference that this should be the target driver, not the means driver.")
keywords: Dict[str, Any] = Field(default_factory=dict, description="The keywords to use in the computation.")
computed: bool = Field(False, description="Whether quantum chemistry has been run on this task.")
result: Any = Field(default_factory=dict, description="AtomicResult return.")
result_id: Optional[str] = Field(None, description="The optional ID for the computation.")
class Config(qcel.models.ProtoModel.Config):
pass
[docs] @validator("basis")
def set_basis(cls, basis):
return basis.lower()
[docs] @validator("method")
def set_method(cls, method):
return method.lower()
[docs] @validator("keywords")
def set_keywords(cls, keywords):
return copy.deepcopy(keywords)
[docs] def plan(self) -> AtomicInput:
"""Form QCSchema input from member data."""
atomic_model = AtomicInput(**{
"molecule": self.molecule.to_schema(dtype=2),
"driver": self.driver,
"model": {
"method": self.method,
"basis": self.basis
},
"keywords": self.keywords,
"protocols": {
"stdout": True,
},
"extras": {
"psiapi": True,
"wfn_qcvars_only": True,
},
})
return atomic_model
[docs] def compute(self, client: Optional["FractalClient"] = None):
"""Run quantum chemistry."""
from psi4.driver import pp
if self.computed:
return
if client:
self.computed = True
from qcportal.models import KeywordSet, Molecule
# Build the keywords
keyword_id = client.add_keywords([KeywordSet(values=self.keywords)])[0]
# Build the molecule
mol = Molecule(**self.molecule.to_schema(dtype=2))
r = client.add_compute(
"psi4", self.method, self.basis, self.driver, keyword_id, [mol]
)
self.result_id = r.ids[0]
# NOTE: The following will re-run errored jobs by default
if self.result_id in r.existing:
ret = client.query_tasks(base_result=self.result_id)
if ret:
if ret[0].status == "ERROR":
client.modify_tasks("restart", base_result=self.result_id)
logger.info("Resubmitting Errored Job {}".format(self.result_id))
elif ret[0].status == "COMPLETE":
logger.debug("Job already completed {}".format(self.result_id))
else:
logger.debug("Job already completed {}".format(self.result_id))
else:
logger.debug("Submitting AtomicResult {}".format(self.result_id))
return
logger.info(f'<<< JSON launch ... {self.molecule.schoenflies_symbol()} {self.molecule.nuclear_repulsion_energy()}')
gof = core.get_output_file()
# EITHER ...
# from psi4.driver import schema_wrapper
# self.result = schema_wrapper.run_qcschema(self.plan())
# ... OR ...
self.result = qcng.compute(
self.plan(),
"psi4",
raise_error=True,
# local_options below suitable for serial mode where each job takes all the resources of the parent Psi4 job.
# distributed runs through QCFractal will likely need a different setup.
local_options={
# B -> GiB
"memory": core.get_memory() / (2 ** 30),
"ncores": core.get_num_threads(),
},
)
# ... END
#pp.pprint(self.result.dict())
#print("... JSON returns >>>")
core.set_output_file(gof, True)
core.reopen_outfile()
logger.debug(pp.pformat(self.result.dict()))
core.print_out(_drink_filter(self.result.dict()["stdout"]))
self.computed = True
[docs] def get_results(self, client: Optional["FractalClient"] = None) -> AtomicResult:
"""Return results as Atomic-flavored QCSchema."""
if self.result:
return self.result
if client:
result = client.query_results(id=self.result_id)
logger.debug(f"Querying AtomicResult {self.result_id}")
if len(result) == 0:
return self.result
self.result = result[0]
return self.result
def _drink_filter(stdout: str) -> str:
"""Don't mess up the widespread ``grep beer`` test of Psi4 doneness by printing multiple drinks per outfile."""
stdout = stdout.replace("\n*** Psi4 exiting successfully. Buy a developer a beer!", "")
stdout = stdout.replace("\n*** Psi4 encountered an error. Buy a developer more coffee!", "")
return stdout