Source code for psi4.driver.procrouting.proc

#
# @BEGIN LICENSE
#
# Psi4: an open-source quantum chemistry software package
#
# Copyright (c) 2007-2024 The Psi4 Developers.
#
# The copyrights for code used from other parties are included in
# the corresponding files.
#
# This file is part of Psi4.
#
# Psi4 is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3.
#
# Psi4 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with Psi4; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# @END LICENSE
#

"""Module with functions that encode the sequence of PSI module
calls for each of the *name* values of the energy(), optimize(),
response(), and frequency() function. *name* can be assumed lowercase by here.

"""
import os
import re
import shutil
import subprocess
import sys
import warnings
from typing import Dict, List, Union

import numpy as np
from qcelemental.util import parse_version, which

from psi4 import core, extras

from .. import p4util
from .. import psifiles as psif
from .. import qcdb
from ..constants import constants
from ..p4util.exceptions import (
    ManagedMethodError,
    PastureRequiredError,
    UpgradeHelper,
    ValidationError,
    docs_table_link,
)

#from psi4.driver.molutil import *
from ..qcdb.basislist import corresponding_basis
from . import dft, empirical_dispersion, mcscf, proc_util, response, solvent
from .proc_data import method_algorithm_type
from .roa import run_roa

# never import driver, wrappers, or aliases into this file



# ADVICE on new additions:
# * two choices: basic `def run` or managed `def select`
# * consult http://psicode.org/psi4manual/master/proc_py.html  --or--  <psi4-repo>/doc/sphinxman/source/proc_py.rst


def select_scf_gradient(name, **kwargs):
    """Function selecting the algorithm for an SCF gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type("scf")  # `"scf"` instead of `name` avoids adding every functional to governing dict in proc_data.py
    module = core.get_global_option('QC_MODULE')

    if mtd_type == 'CD':
        # manifestation of `"""No analytic derivatives for SCF_TYPE CD."""`.
        #   here, only hits upon `gradient("scf")` so above message also present in driver.py to catch e.g., mp2 gradient atop a cd reference.
        func = None
    else:
        func = run_scf_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_mp2(name, **kwargs):
    """Function selecting the algorithm for a MP2 energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module == 'DETCI':
                func = run_detci
            elif module == 'FNOCC':
                func = run_fnocc
            elif module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module == 'OCC':
                func = run_dfocc
            elif module in ['', 'DFMP2']:
                func = run_dfmp2
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module == 'OCC':
                func = run_dfocc
            elif module in ['', 'DFMP2']:
                func = run_dfmp2
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc
    elif reference == 'ROHF':
        if mtd_type == 'CONV':
            if module == 'DETCI':
                raise UpgradeHelper("energy('mp2')", "energy('zapt2')", 1.7,
                    " Replace method MP with method ZAPT for ROHF reference. DETCI is orders-of-magnitude inefficient for perturbation theory.")
            elif module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module == 'OCC':
                func = run_dfocc
            elif module in ['', 'DFMP2']:
                func = run_dfmp2
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc
    elif reference in ['RKS', 'UKS']:
        if mtd_type == 'DF':
            if module in ['', 'DFMP2']:
                func = run_dfmp2

    if module == 'DETCI':
        core.print_out("""\nDETCI is ill-advised for method MP2 as it is available inefficiently as a """
                       """byproduct of a CISD computation.\n""")

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_mp2_gradient(name, **kwargs):
    """Function selecting the algorithm for a MP2 gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')
    all_electron = (core.get_global_option('FREEZE_CORE') == "FALSE")

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if all_electron:
                if module in ['', 'OCC']:
                    func = run_occ_gradient
        elif mtd_type == 'DF':
                if module == 'OCC':
                    func = run_dfocc_gradient
                elif module in ['', 'DFMP2']:
                    func = run_dfmp2_gradient
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if all_electron:
                if module in ['', 'OCC']:
                    func = run_occ_gradient
        elif mtd_type == 'DF':
                if module in ['', 'OCC']:
                    func = run_dfocc_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module, all_electron])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_mp2_property(name, **kwargs):
    """Function selecting the algorithm for a MP2 property call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'DF':
            #if module == 'OCC':
            #    func = run_dfocc_property
            if module in ['', 'DFMP2']:
                func = run_dfmp2_property
    #elif reference == 'UHF':
    #    if mtd_type == 'DF':
    #        if module in ['', 'OCC']:
    #            func = run_dfocc_property

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_omp2(name, **kwargs):
    """Function selecting the algorithm for an OMP2 energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_omp2_gradient(name, **kwargs):
    """Function selecting the algorithm for an OMP2 gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ_gradient
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_omp2_property(name, **kwargs):
    """Function selecting the algorithm for an OMP2 property call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_property

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_omp2p5_property(name, **kwargs):
    """Function selecting the algorithm for an OMP2.5 property call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_property

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_omp3_property(name, **kwargs):
    """Function selecting the algorithm for an OMP3 property call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_property

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_olccd_property(name, **kwargs):
    """Function selecting the algorithm for an OLCCD property call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_property

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_mp3(name, **kwargs):
    """Function selecting the algorithm for a MP3 energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module == 'DETCI':
                func = run_detci
            elif module == 'FNOCC':
                func = run_fnocc
            elif module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc
    elif reference == 'ROHF':
        if mtd_type == 'CONV':
            if module == 'DETCI':
                raise UpgradeHelper("energy('mp3')", "energy('zapt3')", 1.7,
                    " Replace method MP with method ZAPT for ROHF reference. DETCI is orders-of-magnitude inefficient for perturbation theory.")

    if module == 'DETCI':
        core.print_out("""\nDETCI is ill-advised for method MP3 as it is available inefficiently as a """
                       """byproduct of a CISD computation.\n""")

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_mp3_gradient(name, **kwargs):
    """Function selecting the algorithm for a MP3 gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')
    all_electron = (core.get_global_option('FREEZE_CORE') == "FALSE")

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if all_electron:
                if module in ['', 'OCC']:
                    func = run_occ_gradient
        elif mtd_type == 'DF':
                if module in ['', 'OCC']:
                    func = run_dfocc_gradient
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if all_electron:
                if module in ['', 'OCC']:
                    func = run_occ_gradient
        elif mtd_type == 'DF':
                if module in ['', 'OCC']:
                    func = run_dfocc_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module, all_electron])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_omp3(name, **kwargs):
    """Function selecting the algorithm for an OMP3 energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_omp3_gradient(name, **kwargs):
    """Function selecting the algorithm for an OMP3 gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ_gradient
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_mp2p5(name, **kwargs):
    """Function selecting the algorithm for a MP2.5 energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF']:
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_mp2p5_gradient(name, **kwargs):
    """Function selecting the algorithm for a MP2.5 gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')
    all_electron = (core.get_global_option('FREEZE_CORE') == "FALSE")

    func = None
    if reference in ['RHF', 'UHF']:
        if mtd_type == 'CONV':
            if all_electron:
                if module in ['', 'OCC']:
                    func = run_occ_gradient
        elif mtd_type == 'DF':
                if module in ['', 'OCC']:
                    func = run_dfocc_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module, all_electron])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_omp2p5(name, **kwargs):
    """Function selecting the algorithm for an OMP2.5 energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_omp2p5_gradient(name, **kwargs):
    """Function selecting the algorithm for an OMP2.5 gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ_gradient
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_lccd(name, **kwargs):
    """Function selecting the algorithm for a LCCD energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module == 'OCC':
                func = run_occ
            elif module in ['', 'FNOCC']:
                func = run_cepa
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_lccd_gradient(name, **kwargs):
    """Function selecting the algorithm for a LCCD gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')
    all_electron = (core.get_global_option('FREEZE_CORE') == "FALSE")

    func = None
    if reference in ['RHF', 'UHF']:
        if mtd_type == 'CONV':
            if all_electron:
                if module in ['', 'OCC']:
                    func = run_occ_gradient
        elif mtd_type == 'DF':
                if module in ['', 'OCC']:
                    func = run_dfocc_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module, all_electron])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_olccd(name, **kwargs):
    """Function selecting the algorithm for an OLCCD energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_olccd_gradient(name, **kwargs):
    """Function selecting the algorithm for an OLCCD gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF', 'UHF', 'ROHF', 'RKS', 'UKS']:
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ_gradient
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_fnoccsd(name, **kwargs):
    """Function selecting the algorithm for a FNO-CCSD energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module in ['', 'FNOCC']:
                func = run_fnocc
        elif mtd_type == 'DF':
            if module in ['', 'FNOCC']:
                func = run_fnodfcc
        elif mtd_type == 'CD':
            if module in ['', 'FNOCC']:
                func = run_fnodfcc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_ccsd(name, **kwargs):
    """Function selecting the algorithm for a CCSD energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    # [Aug 2022] DF CCSD through CCENERGY for (RHF|ROHF) not enabled here since not advertised. It does run, though, see #2710

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module == 'FNOCC':
                func = run_fnocc
            elif module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module == 'CCT3' and extras.addons("cct3"):
                import cct3
                func = cct3.run_cct3
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy
        elif mtd_type == 'DF':
            if module == 'OCC':
                func = run_dfocc
            elif module in ['', 'FNOCC']:
                func = run_fnodfcc
        elif mtd_type == 'CD':
            if module == 'OCC':
                func = run_dfocc
            elif module in ['', 'FNOCC']:
                func = run_fnodfcc
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy
        elif mtd_type in ["DF", "CD"]:
            if module in ["", "OCC"]:
                func = run_dfocc
    elif reference == 'ROHF':
        if mtd_type == 'CONV':
            if module == 'CCT3' and extras.addons("cct3"):
                import cct3
                func = cct3.run_cct3
            elif module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_ccsd_gradient(name, **kwargs):
    """Function selecting the algorithm for a CCSD gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module in ['', 'CCENERGY']:
                func = run_ccenergy_gradient
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_gradient
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if module in ['', 'CCENERGY']:
                func = run_ccenergy_gradient
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_gradient
    elif reference == 'ROHF':
        if mtd_type == 'CONV':
            if module in ['', 'CCENERGY']:
                func = run_ccenergy_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_fnoccsd_t_(name, **kwargs):
    """Function selecting the algorithm for a FNO-CCSD(T) energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module in ['', 'FNOCC']:
                func = run_fnocc
        elif mtd_type == 'DF':
            if module in ['', 'FNOCC']:
                func = run_fnodfcc
        elif mtd_type == 'CD':
            if module in ['', 'FNOCC']:
                func = run_fnodfcc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_ccsd_t_(name, **kwargs):
    """Function selecting the algorithm for a CCSD(T) energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module == 'FNOCC':
                func = run_fnocc
            elif module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy
        elif mtd_type == 'DF':
            if module == 'OCC':
                func = run_dfocc
            elif module in ['', 'FNOCC']:
                func = run_fnodfcc
        elif mtd_type == 'CD':
            if module == 'OCC':
                func = run_dfocc
            elif module in ['', 'FNOCC']:
                func = run_fnodfcc
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy
        elif mtd_type in ["DF", "CD"]:
            if module in ["OCC"]:  # SOON "",
                func = run_dfocc
    elif reference == 'ROHF':
        if mtd_type == 'CONV':
            if module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_ccsd_t__gradient(name, **kwargs):
    """Function selecting the algorithm for a CCSD(T) gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ['RHF']:
        if mtd_type == 'CONV':
            if module in ['CCENERGY']:  # FORMERLY ""
                func = run_ccenergy_gradient
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc_gradient
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if module in ['CCENERGY']:  # FORMERLY ""
                func = run_ccenergy_gradient
        elif mtd_type == 'DF':
            if module in ['OCC']:  # SOON "",
                func = run_dfocc_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_ccsd_at_(name, **kwargs):
    """Function selecting the algorithm for a a-CCSD(T) energy call
    and directing to specified or best-performance default modules.

    """
    if name.lower() == "a-ccsd(t)":
        pass
    elif name.lower() in ["ccsd(at)", "lambda-ccsd(t)", "ccsd(t)_l"]:
        core.print_out(f"""\nMethod "{name.lower()}" has been regularized to "a-ccsd(t)" for QCVariables.""")
        name = "a-ccsd(t)"

    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc
    elif reference == "UHF":
        if mtd_type == 'CONV':
            if module in ['', 'MRCC'] and which("dmrcc", return_bool=True):
                func = run_mrcc
        elif mtd_type == "DF":
            if module in ["OCC"]:  # SOON "",
                func = run_dfocc
        elif mtd_type == "CD":
            if module in ["OCC"]:  # SOON "",
                func = run_dfocc
    elif reference == "ROHF":
        if mtd_type == 'CONV':
            if module in ['', 'MRCC'] and which("dmrcc", return_bool=True):
                func = run_mrcc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_cisd(name, **kwargs):
    """Function selecting the algorithm for a CISD energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module == 'DETCI':
                func = run_detci
            elif module in ['', 'FNOCC']:
                func = run_cepa
    elif reference == 'ROHF':
        if mtd_type == 'CONV':
            if module in ['', 'DETCI']:
                func = run_detci

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_mp4(name, **kwargs):
    """Function selecting the algorithm for a MP4 energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module == 'DETCI':
                func = run_detci
            elif module in ['', 'FNOCC']:
                func = run_fnocc
    elif reference == 'ROHF':
        if mtd_type == 'CONV':
            if module == 'DETCI':
                raise UpgradeHelper("energy('mp4')", "energy('zapt4')", 1.7,
                    " Replace method MP with method ZAPT for ROHF reference. DETCI is orders-of-magnitude inefficient for perturbation theory.")

    if module == 'DETCI':
        core.print_out("""\nDETCI is ill-advised for method MP4 as it is available inefficiently as a """
                       """byproduct of a CISDT computation.\n""")

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_remp2(name, **kwargs):
    """Function selecting the algorithm for a REMP2 energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference in ["RHF", "UHF"]:
        if mtd_type == 'CONV':
            if module in ['', 'OCC']:
                func = run_occ
        elif mtd_type == 'DF':
            if module in ['', 'OCC']:
                func = run_dfocc
        elif mtd_type == 'CD':
            if module in ['', 'OCC']:
                func = run_dfocc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_ccd(name, **kwargs):
    """Function selecting the algorithm for a CCD energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option("SCF", "REFERENCE")
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option("QC_MODULE")

    func = None
    if reference in ["RHF", "UHF"]:
        if mtd_type == "CONV":
            if module in [""]:
                core.print_out("""\nThis method is not available with conventional integrals. Add "set """
                               """cc_type df" or "set cc_type cd" to input to access this method.\n""")
        elif mtd_type == "DF":
            if module in ["", "OCC"]:
                func = run_dfocc
        elif mtd_type == "CD":
            if module in ["", "OCC"]:
                func = run_dfocc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_ccd_gradient(name, **kwargs):
    """Function selecting the algorithm for a CCD gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option("SCF", "REFERENCE")
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option("QC_MODULE")

    func = None
    if reference in ["RHF", "UHF"]:
        if mtd_type == "CONV":
            if module in [""]:
                core.print_out("""\nThis method is not available with conventional integrals. Add "set """
                               """cc_type df" or "set cc_type cd" to input to access this method.\n""")
        elif mtd_type == "DF":
            if module in ["", "OCC"]:
                func = run_dfocc_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop("probe", False):
        return
    else:
        return func(name, **kwargs)


def select_cc2(name, **kwargs):
    """Function selecting the algorithm for a CC2 energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    # [LAB Aug 2022] I'm leaving MRCC CC2 in as a route, but my c.2014 MRCC consistently yields:
    #   "Approximate CC methods are not implemented for excitation level 2!"
    # [LAB Aug 2022] DF CC2 enabled for test_gradient but only by deliberate `set qc_module ccenergy`
    #   since not advertised. See #2710.

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy
        elif mtd_type == 'DF':
            if module in ['CCENERGY']:
                func = run_ccenergy
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy
    elif reference == 'ROHF':
        if mtd_type == 'CONV':
            if module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_cc2_gradient(name, **kwargs):
    """Function selecting the algorithm for a CC2 gradient call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    # [LAB Aug 2022] Both UHF and ROHF gradients run in ccenergy but ROHF is slightly off (1.e-5)
    #   and UHF is more off (1.e-4). Moreover, manual only claims RHF are working, so restricting here.
    # [LAB Aug 2022] DF CC2 enabled for test_gradient but only by deliberate `set qc_module ccenergy`
    #   since not advertised. See #2710.

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module in ['', 'CCENERGY']:
                func = run_ccenergy_gradient
        elif mtd_type == 'DF':
            if module in ['CCENERGY']:
                func = run_ccenergy_gradient

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_cc3(name, **kwargs):
    """Function selecting the algorithm for a CC3 energy call
    and directing to specified or best-performance default modules.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if module == 'MRCC' and which("dmrcc", return_bool=True):
                func = run_mrcc
            elif module in ['', 'CCENERGY']:
                func = run_ccenergy
    elif reference == 'ROHF':
        if mtd_type == 'CONV':
            # ROHF MRCC CC3  CCn methods are not implemented for ROHF reference!
            if module in ['', 'CCENERGY']:
                func = run_ccenergy

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def select_mrcc(name, **kwargs):
    """Function selecting the algorithm for a CC* energy call
    and directing to specified MRCC module.

    This function is unusual among "select" functions in that it services multiple methods and a
    single module. This function could have been skipped and the methods associated directly with
    run_rmcc; however, routing through this function screens for conv only while
    providing uniform error messages with other select functions.

    """
    reference = core.get_option('SCF', 'REFERENCE')
    type_var, _, mtd_type = method_algorithm_type(name)
    module = core.get_global_option('QC_MODULE')

    # todo fix table link anchor

    func = None
    if reference == 'RHF':
        if mtd_type == 'CONV':
            if module in ['', 'MRCC'] and which("dmrcc", return_bool=True):
                func = run_mrcc
    elif reference == 'UHF':
        if mtd_type == 'CONV':
            if module in ['', 'MRCC'] and which("dmrcc", return_bool=True):
                func = run_mrcc
    elif reference == 'ROHF':
        if mtd_type == 'CONV':
            if module in ['', 'MRCC'] and which("dmrcc", return_bool=True):
                func = run_mrcc

    if func is None:
        raise ManagedMethodError([__name__, name, type_var, mtd_type, reference, module])

    if kwargs.pop('probe', False):
        return
    else:
        return func(name, **kwargs)


def build_functional_and_disp(name, restricted, save_pairwise_disp=False, **kwargs):

    if core.has_option_changed("SCF", "DFT_DISPERSION_PARAMETERS"):
        modified_disp_params = core.get_option("SCF", "DFT_DISPERSION_PARAMETERS")
    else:
        modified_disp_params = None

    # Figure out functional
    superfunc, disp_type = dft.build_superfunctional(name, restricted)

    if disp_type:
        if isinstance(name, dict):
            # user dft_functional={} spec - type for lookup, dict val for param defs,
            #   name & citation discarded so only param matches to existing defs will print labels
            _disp_functor = empirical_dispersion.EmpiricalDispersion(name_hint='',
                                                                     level_hint=disp_type["type"],
                                                                     param_tweaks=disp_type["params"],
                                                                     save_pairwise_disp=save_pairwise_disp,
                                                                     engine=kwargs.get('engine', None))
        else:
            # dft/*functionals.py spec - name & type for lookup, option val for param tweaks
            _disp_functor = empirical_dispersion.EmpiricalDispersion(name_hint=superfunc.name(),
                                                                     level_hint=disp_type["type"],
                                                                     param_tweaks=modified_disp_params,
                                                                     save_pairwise_disp=save_pairwise_disp,
                                                                     engine=kwargs.get('engine', None))

        # [Aug 2018] there once was a breed of `disp_type` that quacked
        #   like a list rather than the more common dict handled above. if
        #   ever again sighted, make an issue so this code can accommodate.

        _disp_functor.print_out()
        return superfunc, _disp_functor

    else:
        return superfunc, None

[docs] def scf_wavefunction_factory(name, ref_wfn, reference, **kwargs): """Builds the correct (R/U/RO/CU HF/KS) wavefunction from the provided information, sets relevant auxiliary basis sets on it, and prepares any empirical dispersion. """ # Figure out functional and dispersion superfunc, _disp_functor = build_functional_and_disp(name, restricted=(reference in ["RKS", "RHF"]), **kwargs) # Build the wavefunction core.prepare_options_for_module("SCF") if reference in ["RHF", "RKS"]: wfn = core.RHF(ref_wfn, superfunc) elif reference == "ROHF": wfn = core.ROHF(ref_wfn, superfunc) elif reference in ["UHF", "UKS"]: wfn = core.UHF(ref_wfn, superfunc) elif reference == "CUHF": wfn = core.CUHF(ref_wfn, superfunc) else: raise ValidationError("SCF: Unknown reference (%s) when building the Wavefunction." % reference) if _disp_functor and _disp_functor.engine != 'nl': wfn._disp_functor = _disp_functor # Set the DF basis sets df_needed = core.get_global_option("SCF_TYPE") in ["DF", "MEM_DF", "DISK_DF" ] df_needed |= "DFDIRJ" in core.get_global_option("SCF_TYPE") df_needed |= (core.get_global_option("SCF_TYPE") == "DIRECT" and core.get_option("SCF", "DF_SCF_GUESS")) if df_needed: aux_basis = core.BasisSet.build(wfn.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), puream=wfn.basisset().has_puream()) wfn.set_basisset("DF_BASIS_SCF", aux_basis) else: wfn.set_basisset("DF_BASIS_SCF", core.BasisSet.zero_ao_basis_set()) # Set the relativistic basis sets if core.get_global_option("RELATIVISTIC") in ["X2C", "DKH"]: decon_basis = core.BasisSet.build(wfn.molecule(), "BASIS_RELATIVISTIC", core.get_option("SCF", "BASIS_RELATIVISTIC"), "DECON", core.get_global_option('BASIS'), puream=wfn.basisset().has_puream()) wfn.set_basisset("BASIS_RELATIVISTIC", decon_basis) # Set the multitude of SAD basis sets if (core.get_option("SCF", "GUESS") in ["SAD", "SADNO", "HUCKEL", "MODHUCKEL"]): sad_basis_list = core.BasisSet.build(wfn.molecule(), "ORBITAL", core.get_global_option("BASIS"), puream=wfn.basisset().has_puream(), return_atomlist=True) wfn.set_sad_basissets(sad_basis_list) if ("DF" in core.get_option("SCF", "SAD_SCF_TYPE")): # We need to force this to spherical regardless of any user or other demands. optstash = p4util.OptionsState(['PUREAM']) core.set_global_option('PUREAM', True) sad_fitting_list = core.BasisSet.build(wfn.molecule(), "DF_BASIS_SAD", core.get_option("SCF", "DF_BASIS_SAD"), puream=True, return_atomlist=True) wfn.set_sad_fitting_basissets(sad_fitting_list) optstash.restore() if core.get_option("SCF", "GUESS") == "SAPGAU": # Populate sapgau basis sapgau = core.BasisSet.build(wfn.molecule(), "SAPGAU_BASIS", core.get_global_option("SAPGAU_BASIS")) wfn.set_basisset("SAPGAU", sapgau) if hasattr(core, "EXTERN") and 'external_potentials' in kwargs: core.print_out("\n Warning! Both an external potential EXTERN object and the external_potential" + " keyword argument are specified. The external_potentials keyword argument will be ignored.\n") raise ValidationError("double extern") ep = kwargs.get("external_potentials", None) if ep is not None: _set_external_potentials_to_wavefunction(ep, wfn) return wfn
def _set_external_potentials_to_wavefunction(external_potential: Union[List, Dict[str, List]], wfn: "core.Wavefunction"): """Initialize :py:class:`psi4.core.ExternalPotential` object(s) from charges and locations and set on **wfn**. Parameters ---------- external_potential List-like structure where each row corresponds to a charge. Lines can be composed of ``q, [x, y, z]`` or ``q, x, y, z``. Locations are in [a0]. Or, dictionary where keys are FI-SAPT fragments A, B, or C and values are as above. """ from psi4.driver.qmmm import QMMMbohr def validate_qxyz(qxyz): if len(qxyz) == 2: return qxyz[0], qxyz[1][0], qxyz[1][1], qxyz[1][2] elif len(qxyz) == 4: return qxyz[0], qxyz[1], qxyz[2], qxyz[3] else: raise ValidationError(f"Point charge '{qxyz}' not mapping into 'chg, [x, y, z]' or 'chg, x, y, z'") if isinstance(external_potential, dict): # For FSAPT, we can take a dictionary of external potentials, e.g., # external_potentials={'A': potA, 'B': potB, 'C': potC} (any optional) # For the dimer SAPT calculation, we need to account for the external potential # in all of the subsystems A, B, C. So we add them all in total_external_potential # and set the external potential to the dimer wave function total_external_potential = core.ExternalPotential() for frag, frag_qxyz in external_potential.items(): if frag.upper() in "ABC": chrgfield = QMMMbohr() for qxyz in frag_qxyz: chrgfield.extern.addCharge(*validate_qxyz(qxyz)) wfn.set_potential_variable(frag.upper(), chrgfield.extern) total_external_potential.appendCharges(chrgfield.extern.getCharges()) else: core.print_out("\n Warning! Unknown key for the external_potentials argument: %s" % frag) wfn.set_external_potential(total_external_potential) else: chrgfield = QMMMbohr() for qxyz in external_potential: chrgfield.extern.addCharge(*validate_qxyz(qxyz)) wfn.set_potential_variable("C", chrgfield.extern) # This is for the FSAPT procedure wfn.set_external_potential(chrgfield.extern)
[docs] def scf_helper(name, post_scf=True, **kwargs): """Function serving as helper to SCF, choosing whether to cast up or just run SCF with a standard guess. This preserves previous SCF options set by other procedures (e.g., SAPT output file types for SCF). Most run_* functions should call this function, common exceptions being when multireference SCF is needed or when restarting from converged SCF. """ if post_scf: name = "scf" optstash = p4util.OptionsState( ['PUREAM'], ['BASIS'], ['QMEFP'], ['INTS_TOLERANCE'], ['DF_BASIS_SCF'], ['SCF', 'GUESS'], ['SCF', 'DF_INTS_IO'], ['SCF', 'ORBITALS_WRITE'], ['SCF_TYPE'], # Hack: scope gets changed internally with the Andy trick ) optstash2 = p4util.OptionsState( ['BASIS'], ['DF_BASIS_SCF'], ['SCF_TYPE'], ['SCF', 'DF_INTS_IO'], ) # Make sure we grab the correctly scoped integral threshold for SCF core.set_global_option('INTS_TOLERANCE', core.get_option('SCF', 'INTS_TOLERANCE')) # Grab a few kwargs use_c1 = kwargs.get('use_c1', False) scf_molecule = kwargs.get('molecule', core.get_active_molecule()) read_orbitals = core.get_option('SCF', 'GUESS') == "READ" do_timer = kwargs.pop("do_timer", True) ref_wfn = kwargs.pop('ref_wfn', None) if ref_wfn is not None: raise ValidationError("Cannot seed an SCF calculation with a reference wavefunction ('ref_wfn' kwarg).") # decide if we keep the checkpoint file _chkfile = kwargs.get('write_orbitals', True) write_checkpoint_file = False if isinstance(_chkfile, str): write_checkpoint_file = True filename = kwargs.get('write_orbitals') core.set_local_option("SCF", "ORBITALS_WRITE", filename) elif _chkfile is True: write_checkpoint_file = True # Continuum solvation needs to be run w/o symmetry if core.get_option("SCF", "PCM") or core.get_option("SCF", "DDX"): c1_molecule = scf_molecule.clone() c1_molecule.reset_point_group('c1') c1_molecule.update_geometry() scf_molecule = c1_molecule core.print_out(""" PCM or DDX continuum solvation does not make use of molecular symmetry: """ """further calculations in C1 point group.\n""") # PE needs to use exactly input orientation to correspond to potfile if core.get_option("SCF", "PE") or "external_potentials" in kwargs: c1_molecule = scf_molecule.clone() if getattr(scf_molecule, "_initial_cartesian", None) is not None: c1_molecule._initial_cartesian = scf_molecule._initial_cartesian.clone() c1_molecule.set_geometry(c1_molecule._initial_cartesian) c1_molecule.reset_point_group("c1") c1_molecule.fix_orientation(True) c1_molecule.fix_com(True) c1_molecule.update_geometry() else: raise ValidationError("Set no_com/no_reorient/symmetry c1 by hand for PE or external potentials on non-Cartesian molecules.") scf_molecule = c1_molecule core.print_out(""" PE does not make use of molecular symmetry: """ """further calculations in C1 point group.\n""") core.print_out(""" PE geometry must align with POTFILE keyword: """ """resetting coordinates with fixed origin and orientation.\n""") # SCF Banner data banner = kwargs.pop('banner', None) bannername = name # Did we pass in a DFT functional? dft_func = kwargs.pop('dft_functional', None) if dft_func is not None: if name.lower() != "scf": raise ValidationError("dft_functional was supplied to SCF, but method name was not SCF ('%s')" % name) name = dft_func bannername = name if isinstance(name, dict): bannername = name.get("name", "custom functional") p4util.libint2_print_out() # Setup the timer if do_timer: core.tstart() # Second-order SCF requires non-symmetric density matrix support if core.get_option('SCF', 'SOSCF'): proc_util.check_non_symmetric_jk_density("Second-order SCF") # sort out cast_up settings. no need to stash these since only read, never reset cast = False if core.has_option_changed('SCF', 'BASIS_GUESS'): cast = core.get_option('SCF', 'BASIS_GUESS') if p4util.yes.match(str(cast)): cast = True elif p4util.no.match(str(cast)): cast = False if cast: # A user can set "BASIS_GUESS" to True and we default to 3-21G if cast is True: guessbasis = corresponding_basis(core.get_global_option('BASIS'), 'GUESS')[0] if guessbasis is None: guessbasis = '3-21G' # guess of last resort else: guessbasis = cast core.set_global_option('BASIS', guessbasis) castdf = 'DF' in core.get_global_option('SCF_TYPE') if core.has_option_changed('SCF', 'DF_BASIS_GUESS'): castdf = core.get_option('SCF', 'DF_BASIS_GUESS') if p4util.yes.match(str(castdf)): castdf = True elif p4util.no.match(str(castdf)): castdf = False if castdf: core.set_global_option('SCF_TYPE', 'DF') core.set_local_option('SCF', 'DF_INTS_IO', 'none') # Figure out the fitting basis set if castdf is True: core.set_global_option('DF_BASIS_SCF', '') elif isinstance(castdf, str): core.set_global_option('DF_BASIS_SCF', castdf) else: raise ValidationError("Unexpected castdf option (%s)." % castdf) # Switch to the guess namespace namespace = core.IO.get_default_namespace() guesspace = namespace + '.guess' if namespace == '': guesspace = 'guess' core.IO.set_default_namespace(guesspace) # Print some info about the guess core.print_out('\n') p4util.banner('Guess SCF, %s Basis' % (guessbasis)) core.print_out('\n') if cast and read_orbitals: raise ValidationError("""Detected options to both cast and read orbitals""") if (core.get_option('SCF', 'STABILITY_ANALYSIS') == 'FOLLOW') and (core.get_option('SCF', 'REFERENCE') != 'UHF'): raise ValidationError(f"""Stability analysis root following is only available for unrestricted Hartree--Fock, not present {core.get_option('SCF', 'REFERENCE')}""") # If GUESS is auto guess what it should be if core.get_option('SCF', 'GUESS') == "AUTO": if (scf_molecule.natom() > 1): core.set_local_option('SCF', 'GUESS', 'SAD') else: core.set_local_option('SCF', 'GUESS', 'CORE') if core.get_global_option('BASIS') in ['', '(AUTO)']: if name in ['hf3c', 'hf-3c']: core.set_global_option('BASIS', 'minix') elif name in ['pbeh3c', 'pbeh-3c']: core.set_global_option('BASIS', 'def2-msvp') elif name in ['r2scan3c', 'r2scan-3c']: core.set_global_option('BASIS', 'def2-mTZVPP') elif name in ['b973c', 'b97-3c']: core.set_global_option('BASIS', 'def2-mTZVP') elif name in ['wb97x3c', 'wb97x-3c']: core.set_global_option('BASIS', 'vdzp') # the FIRST scf call if cast: # Cast is a special case base_wfn = core.Wavefunction.build(scf_molecule, core.get_global_option('BASIS')) core.print_out("\n ---------------------------------------------------------\n") if banner: core.print_out(" " + banner.center(58)) if cast: core.print_out(" " + "SCF Castup computation".center(58)) ref_wfn = scf_wavefunction_factory(name, base_wfn, core.get_option('SCF', 'REFERENCE'), **kwargs) # Compute additive correction: dftd3, mp2d, dftd4, etc. if hasattr(ref_wfn, "_disp_functor"): disp_energy = ref_wfn._disp_functor.compute_energy(ref_wfn.molecule()) ref_wfn.set_variable("-D Energy", disp_energy) ref_wfn.compute_energy() # cast clean-up if cast: # Move files to proper namespace core.IO.change_file_namespace(180, guesspace, namespace) core.IO.set_default_namespace(namespace) optstash2.restore() # Print the banner for the standard operation core.print_out('\n') p4util.banner(bannername.upper()) core.print_out('\n') # the SECOND scf call base_wfn = core.Wavefunction.build(scf_molecule, core.get_global_option('BASIS')) if banner: core.print_out("\n ---------------------------------------------------------\n") core.print_out(" " + banner.center(58)) scf_wfn = scf_wavefunction_factory(name, base_wfn, core.get_option('SCF', 'REFERENCE'), **kwargs) # The wfn from_file routine adds the npy suffix if needed, but we add it here so that # we can use os.path.isfile to query whether the file exists before attempting to read read_filename = scf_wfn.get_scratch_filename(180) + '.npy' if ((core.get_option('SCF', 'GUESS') == 'READ') and os.path.isfile(read_filename)): old_wfn = core.Wavefunction.from_file(read_filename) Ca_occ = old_wfn.Ca_subset("SO", "OCC") Cb_occ = old_wfn.Cb_subset("SO", "OCC") if old_wfn.molecule().schoenflies_symbol() != scf_molecule.schoenflies_symbol(): raise ValidationError("Cannot compute projection of different symmetries.") if old_wfn.basisset().name() == scf_wfn.basisset().name(): core.print_out(f" Reading orbitals from file {read_filename}, no projection.\n\n") scf_wfn.guess_Ca(Ca_occ) scf_wfn.guess_Cb(Cb_occ) else: core.print_out(f" Reading orbitals from file {read_filename}, projecting to new basis.\n\n") core.print_out(" Computing basis projection from %s to %s\n\n" % (old_wfn.basisset().name(), scf_wfn.basisset().name())) pCa = scf_wfn.basis_projection(Ca_occ, old_wfn.nalphapi(), old_wfn.basisset(), scf_wfn.basisset()) pCb = scf_wfn.basis_projection(Cb_occ, old_wfn.nbetapi(), old_wfn.basisset(), scf_wfn.basisset()) scf_wfn.guess_Ca(pCa) scf_wfn.guess_Cb(pCb) # Strip off headers to only get R, RO, U, CU old_ref = old_wfn.name().replace("KS", "").replace("HF", "") new_ref = scf_wfn.name().replace("KS", "").replace("HF", "") if old_ref != new_ref: scf_wfn.reset_occ_ = True elif (core.get_option('SCF', 'GUESS') == 'READ') and not os.path.isfile(read_filename): core.print_out(f"\n !!! Unable to find file {read_filename}, defaulting to SAD guess. !!!\n\n") core.set_local_option('SCF', 'GUESS', 'SAD') sad_basis_list = core.BasisSet.build(scf_wfn.molecule(), "ORBITAL", core.get_global_option("BASIS"), puream=scf_wfn.basisset().has_puream(), return_atomlist=True) scf_wfn.set_sad_basissets(sad_basis_list) if ("DF" in core.get_option("SCF", "SAD_SCF_TYPE")): sad_fitting_list = core.BasisSet.build(scf_wfn.molecule(), "DF_BASIS_SAD", core.get_option("SCF", "DF_BASIS_SAD"), puream=scf_wfn.basisset().has_puream(), return_atomlist=True) scf_wfn.set_sad_fitting_basissets(sad_fitting_list) if cast: core.print_out("\n Computing basis projection from %s to %s\n\n" % (ref_wfn.basisset().name(), base_wfn.basisset().name())) if ref_wfn.basisset().n_ecp_core() != base_wfn.basisset().n_ecp_core(): raise ValidationError("Projecting from basis ({}) with ({}) ECP electrons to basis ({}) with ({}) ECP electrons will be a disaster. Select a compatible cast-up basis with `set guess_basis YOUR_BASIS_HERE`.".format( ref_wfn.basisset().name(), ref_wfn.basisset().n_ecp_core(), base_wfn.basisset().name(), base_wfn.basisset().n_ecp_core())) pCa = ref_wfn.basis_projection(ref_wfn.Ca(), ref_wfn.nalphapi(), ref_wfn.basisset(), scf_wfn.basisset()) pCb = ref_wfn.basis_projection(ref_wfn.Cb(), ref_wfn.nbetapi(), ref_wfn.basisset(), scf_wfn.basisset()) scf_wfn.guess_Ca(pCa) scf_wfn.guess_Cb(pCb) # Print basis set info if core.get_option("SCF", "PRINT_BASIS"): scf_wfn.basisset().print_detail_out() # Compute additive correction: dftd3, mp2d, dftd4, etc. if hasattr(scf_wfn, "_disp_functor"): disp_energy = scf_wfn._disp_functor.compute_energy(scf_wfn.molecule(), scf_wfn) scf_wfn.set_variable("-D Energy", disp_energy) # PCM preparation if core.get_option('SCF', 'PCM'): if core.get_option('SCF', 'PE'): raise ValidationError("""Error: 3-layer QM/MM/PCM not implemented.\n""") pcmsolver_parsed_fname = core.get_local_option('PCM', 'PCMSOLVER_PARSED_FNAME') pcm_print_level = core.get_option('SCF', "PRINT") scf_wfn.set_PCM(core.PCM(pcmsolver_parsed_fname, pcm_print_level, scf_wfn.basisset())) # DDPCM preparation if core.get_option('SCF', 'DDX'): if not solvent._have_ddx: raise ModuleNotFoundError('Python module ddx not found. Solve by installing it: `conda install -c conda-forge pyddx` or `pip install pyddx`') ddx_options = solvent.ddx.get_ddx_options(scf_molecule) scf_wfn.ddx = solvent.ddx.DdxInterface( molecule=scf_molecule, options=ddx_options, basisset=scf_wfn.basisset() ) scf_wfn.ddx_state = None # PE preparation if core.get_option('SCF', 'PE'): if not solvent._have_pe: raise ModuleNotFoundError('Python module cppe not found. Solve by installing it: `conda install -c conda-forge cppe`') # PE needs information about molecule and basis set pol_embed_options = solvent.pol_embed.get_pe_options() core.print_out(f""" Using potential file {pol_embed_options["potfile"]} for Polarizable Embedding calculation.\n""") scf_wfn.pe_state = solvent.pol_embed.CppeInterface( molecule=scf_molecule, options=pol_embed_options, basisset=scf_wfn.basisset() ) e_scf = scf_wfn.compute_energy() for obj in [core, scf_wfn]: # set_variable("SCF TOTAL ENERGY") # P::e SCF for pv in ["SCF TOTAL ENERGY", "CURRENT ENERGY", "CURRENT REFERENCE ENERGY"]: obj.set_variable(pv, e_scf) # We always would like to print a little property information if kwargs.get('scf_do_properties', True): oeprop = core.OEProp(scf_wfn) oeprop.set_title("SCF") # Figure our properties, if empty do dipole props = [x.upper() for x in core.get_option("SCF", "SCF_PROPERTIES")] if "DIPOLE" not in props: props.append("DIPOLE") proc_util.oeprop_validator(props) for x in props: oeprop.add(x) # Populate free-atom volumes # if we're doing MBIS if 'MBIS_VOLUME_RATIOS' in props: p4util.free_atom_volumes(scf_wfn) # Compute properties oeprop.compute() for obj in [core, scf_wfn]: with warnings.catch_warnings(): warnings.simplefilter("ignore") obj.set_variable("CURRENT DIPOLE", obj.variable("SCF DIPOLE")) # P::e SCF # Write out MO's if core.get_option("SCF", "PRINT_MOS"): mowriter = core.MOWriter(scf_wfn) mowriter.write() # Write out a molden file if core.get_option("SCF", "MOLDEN_WRITE"): filename = core.get_writer_file_prefix(scf_molecule.name()) + ".molden" dovirt = bool(core.get_option("SCF", "MOLDEN_WITH_VIRTUAL")) occa = scf_wfn.occupation_a() occb = scf_wfn.occupation_a() mw = core.MoldenWriter(scf_wfn) mw.write(filename, scf_wfn.Ca(), scf_wfn.Cb(), scf_wfn.epsilon_a(), scf_wfn.epsilon_b(), scf_wfn.occupation_a(), scf_wfn.occupation_b(), dovirt) # Write checkpoint file (orbitals and basis); Can be disabled, e.g., for findif displacements if write_checkpoint_file and isinstance(_chkfile, str): filename = kwargs['write_orbitals'] scf_wfn.to_file(filename) # core.set_local_option("SCF", "ORBITALS_WRITE", filename) elif write_checkpoint_file: filename = scf_wfn.get_scratch_filename(180) scf_wfn.to_file(filename) extras.register_numpy_file(filename) # retain with -m (messy) option if do_timer: core.tstop() optstash.restore() if (not use_c1) or (scf_molecule.schoenflies_symbol() == 'c1'): return scf_wfn else: # C1 copy quietly c1_optstash = p4util.OptionsState(['PRINT']) core.set_global_option("PRINT", 0) # If we force c1 copy the active molecule scf_molecule.update_geometry() core.print_out("""\n A requested method does not make use of molecular symmetry: """ """further calculations in C1 point group.\n\n""") c1_molecule = scf_molecule.clone() c1_molecule.reset_point_group('c1') c1_molecule.fix_orientation(True) c1_molecule.fix_com(True) c1_molecule.update_geometry() c1_basis = core.BasisSet.build(c1_molecule, "ORBITAL", core.get_global_option('BASIS'), quiet=True) tmp = scf_wfn.c1_deep_copy(c1_basis) if not scf_wfn.has_variable("-D ENERGY"): tmp.del_variable("-D ENERGY") c1_jkbasis = core.BasisSet.build(c1_molecule, "DF_BASIS_SCF", core.get_global_option("DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), quiet=True) tmp.set_basisset("DF_BASIS_SCF", c1_jkbasis) c1_optstash.restore() return tmp
def run_dct(name, **kwargs): """Function encoding sequence of PSI module calls for a density cumulant theory calculation. """ if (core.get_global_option('FREEZE_CORE') == 'TRUE'): raise ValidationError('Frozen core is not available for DCT.') # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) if (core.get_global_option("DCT_TYPE") == "DF"): core.print_out(" Constructing Basis Sets for DCT...\n\n") aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_DCT", core.get_global_option("DF_BASIS_DCT"), "RIFIT", core.get_global_option("BASIS")) ref_wfn.set_basisset("DF_BASIS_DCT", aux_basis) scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis) dct_wfn = core.dct(ref_wfn) else: # Ensure IWL files have been written for non DF-DCT proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) dct_wfn = core.dct(ref_wfn) for k, v in dct_wfn.variables().items(): core.set_variable(k, v) return dct_wfn def run_dct_gradient(name, **kwargs): """Function encoding sequence of PSI module calls for DCT gradient calculation. """ optstash = p4util.OptionsState( ['GLOBALS', 'DERTYPE']) core.set_global_option('DERTYPE', 'FIRST') dct_wfn = run_dct_property(name, **kwargs) derivobj = core.Deriv(dct_wfn) derivobj.set_tpdm_presorted(True) if core.get_option('DCT', 'DCT_TYPE') == 'CONV': grad = derivobj.compute() else: grad = derivobj.compute_df('DF_BASIS_SCF', 'DF_BASIS_DCT') dct_wfn.set_gradient(grad) optstash.restore() return dct_wfn def run_dct_property(name, **kwargs): """ Function encoding sequence of PSI module calls for DCT property calculation. """ optstash = p4util.OptionsState( ['DCT', 'OPDM']) core.set_local_option('DCT', 'OPDM', 'true') dct_wfn = run_dct(name, **kwargs) # Run OEProp oe = core.OEProp(dct_wfn) oe.set_title("DCT") for prop in kwargs.get("properties", []): prop = prop.upper() if prop in core.OEProp.valid_methods or "MULTIPOLE(" in prop: oe.add(prop) oe.compute() dct_wfn.oeprop = oe for k, v in dct_wfn.variables().items(): core.set_variable(k, v) optstash.restore() return dct_wfn def run_dfocc(name, **kwargs): """Function encoding sequence of PSI module calls for a density-fitted or Cholesky-decomposed (non-)orbital-optimized MPN or CC computation. """ dtl = docs_table_link("dummy", "occ_nonoo") optstash = p4util.OptionsState( ['SCF', 'DF_INTS_IO'], ['DFOCC', 'WFN_TYPE'], ['DFOCC', 'ORB_OPT'], ['DFOCC', 'DO_SCS'], ['DFOCC', 'DO_SOS'], ['DFOCC', 'READ_SCF_3INDEX'], ['DFOCC', 'CHOLESKY'], ['DFOCC', 'CC_LAMBDA']) def set_cholesky_from(corl_type): if corl_type == 'DF': core.set_local_option('DFOCC', 'CHOLESKY', 'FALSE') proc_util.check_disk_df(name.upper(), optstash) elif corl_type == 'CD': core.set_local_option('DFOCC', 'CHOLESKY', 'TRUE') # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): optstash.add_option(['SCF_TYPE']) core.set_global_option('SCF_TYPE', 'CD') core.print_out(""" SCF Algorithm Type (re)set to CD.\n""") if core.get_global_option('SCF_TYPE') != 'CD': core.set_local_option('DFOCC', 'READ_SCF_3INDEX', 'FALSE') else: raise ValidationError(f"""Invalid type '{corl_type}' for DFOCC. See Capabilities Table at {dtl}""") if name in ["mp2.5", "mp3"] and not core.has_global_option_changed("MP_TYPE"): core.print_out(f" Information: {name.upper()} default algorithm changed to DF in August 2020. Use `set mp_type conv` for previous behavior.\n") director = { "mp2": {"wfn_type": "DF-OMP2", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "omp2": {"wfn_type": "DF-OMP2", "orb_opt": "TRUE", "nat_orbs": "FALSE",}, "mp2.5": {"wfn_type": "DF-OMP2.5", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "omp2.5": {"wfn_type": "DF-OMP2.5", "orb_opt": "TRUE", "nat_orbs": "FALSE",}, "mp3": {"wfn_type": "DF-OMP3", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "omp3": {"wfn_type": "DF-OMP3", "orb_opt": "TRUE", "nat_orbs": "FALSE",}, "remp2": {"wfn_type": "DF-OREMP", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "oremp2": {"wfn_type": "DF-OREMP", "orb_opt": "TRUE", "nat_orbs": "FALSE",}, "lccd": {"wfn_type": "DF-OLCCD", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "olccd": {"wfn_type": "DF-OLCCD", "orb_opt": "TRUE", "nat_orbs": "FALSE",}, "ccd": {"wfn_type": "DF-CCD", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, # changes to DF-OCCD "ccsd": {"wfn_type": "DF-CCSD", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "ccsd(t)": {"wfn_type": "DF-CCSD(T)", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "a-ccsd(t)": {"wfn_type": "DF-CCSD(AT)", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, } if name not in director: raise ValidationError(f"Invalid method {name} for DFOCC energy") # throw exception for CONV (approximately). run reference defaulting logic set_cholesky_from(method_algorithm_type(name).now) for k, v in director[name].items(): core.set_local_option("DFOCC", k.upper(), v) core.set_local_option('DFOCC', 'DO_SCS', 'FALSE') core.set_local_option('DFOCC', 'DO_SOS', 'FALSE') core.set_local_option('SCF', 'DF_INTS_IO', 'SAVE') # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified else: if ref_wfn.molecule().schoenflies_symbol() != 'c1': raise ValidationError(""" DFOCC does not make use of molecular symmetry: """ """reference wavefunction must be C1.\n""") if not core.get_local_option("DFOCC", "CHOLESKY"): core.print_out(" Constructing Basis Sets for DFOCC...\n\n") scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis) aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_CC", core.get_global_option("DF_BASIS_CC"), "RIFIT", core.get_global_option("BASIS")) ref_wfn.set_basisset("DF_BASIS_CC", aux_basis) if core.get_option('SCF', 'REFERENCE') == 'ROHF': ref_wfn.semicanonicalize() dfocc_wfn = core.dfocc(ref_wfn) # Shove variables into global space for k, v in dfocc_wfn.variables().items(): core.set_variable(k, v) optstash.restore() return dfocc_wfn def run_dfocc_gradient(name, **kwargs): """Function encoding sequence of PSI module calls for a density-fitted (non-)orbital-optimized MPN or CC computation. """ dtl = docs_table_link("dummy", "occ_nonoo") optstash = p4util.OptionsState( ['SCF', 'DF_INTS_IO'], ['REFERENCE'], ['DFOCC', 'WFN_TYPE'], ['DFOCC', 'ORB_OPT'], ['DFOCC', 'CC_LAMBDA'], ['GLOBALS', 'DERTYPE']) if name in ["mp2.5", "mp3"] and not core.has_global_option_changed("MP_TYPE"): core.print_out(f" Information: {name.upper()} default algorithm changed to DF in August 2020. Use `set mp_type conv` for previous behavior.\n") # CC_LAMBDA keyword was being set TRUE sporadically, but that's covered c-side director = { "mp2": {"wfn_type": "DF-OMP2", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "omp2": {"wfn_type": "DF-OMP2", "orb_opt": "TRUE", "nat_orbs": "FALSE",}, "mp2.5": {"wfn_type": "DF-OMP2.5", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "omp2.5": {"wfn_type": "DF-OMP2.5", "orb_opt": "TRUE", "nat_orbs": "FALSE",}, "mp3": {"wfn_type": "DF-OMP3", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "omp3": {"wfn_type": "DF-OMP3", "orb_opt": "TRUE", "nat_orbs": "FALSE",}, "remp2": {"wfn_type": "DF-OREMP", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "oremp2": {"wfn_type": "DF-OREMP", "orb_opt": "TRUE", "nat_orbs": "FALSE",}, "lccd": {"wfn_type": "DF-OLCCD", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "olccd": {"wfn_type": "DF-OLCCD", "orb_opt": "TRUE", "nat_orbs": "FALSE",}, "ccd": {"wfn_type": "DF-CCD", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, # changes to DF-OCCD "ccsd": {"wfn_type": "DF-CCSD", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, "ccsd(t)": {"wfn_type": "DF-CCSD(T)", "orb_opt": "FALSE", "nat_orbs": "FALSE",}, } if name not in director: raise ValidationError(f"Invalid method {name} for DFOCC gradient") # throw exception for CONV (approximately) if (corl_type := method_algorithm_type(name).now) not in ["DF", "CD"]: raise ValidationError(f"Invalid type {corl_type} for DFOCC gradient. See Capabilities Table at {dtl}") proc_util.check_disk_df(name.upper(), optstash) # throw exception for SCF_TYPE if core.get_global_option('SCF_TYPE') != 'DISK_DF': raise ValidationError('DFOCC gradients need DF-SCF reference.') for k, v in director[name].items(): core.set_local_option("DFOCC", k.upper(), v) core.set_global_option('DERTYPE', 'FIRST') core.set_local_option('DFOCC', 'DO_SCS', 'FALSE') core.set_local_option('DFOCC', 'DO_SOS', 'FALSE') core.set_local_option('SCF', 'DF_INTS_IO', 'SAVE') # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified else: if ref_wfn.molecule().schoenflies_symbol() != 'c1': raise ValidationError(""" DFOCC does not make use of molecular symmetry: """ """reference wavefunction must be C1.\n""") core.print_out(" Constructing Basis Sets for DFOCC...\n\n") scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis) aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_CC", core.get_global_option("DF_BASIS_CC"), "RIFIT", core.get_global_option("BASIS")) ref_wfn.set_basisset("DF_BASIS_CC", aux_basis) if core.get_option('SCF', 'REFERENCE') == 'ROHF': ref_wfn.semicanonicalize() dfocc_wfn = core.dfocc(ref_wfn) derivobj = core.Deriv(dfocc_wfn) derivobj.compute_df("DF_BASIS_SCF", "DF_BASIS_CC") dfocc_wfn.set_variable(f"{name.upper()} TOTAL GRADIENT", dfocc_wfn.gradient()) # Shove variables into global space for k, v in dfocc_wfn.variables().items(): core.set_variable(k, v) optstash.restore() return dfocc_wfn def run_dfocc_property(name, **kwargs): """Function encoding sequence of PSI module calls for a density-fitted (non-)orbital-optimized MPN or CC computation. """ optstash = p4util.OptionsState( ['SCF', 'DF_INTS_IO'], ['DFOCC', 'WFN_TYPE'], ['DFOCC', 'ORB_OPT'], ['DFOCC', 'OEPROP']) if name in ['mp2', 'omp2']: core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OMP2') elif name in ['omp3']: core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OMP3') elif name in ['omp2.5']: core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OMP2.5') elif name in ['olccd']: core.set_local_option('DFOCC', 'WFN_TYPE', 'DF-OLCCD') else: raise ValidationError('Unidentified method ' % (name)) proc_util.check_disk_df(name.upper(), optstash) if name in ['mp2']: core.set_local_option('DFOCC', 'ORB_OPT', 'FALSE') elif name in ['omp2', 'omp3', 'omp2.5', 'olccd']: core.set_local_option('DFOCC', 'ORB_OPT', 'TRUE') core.set_local_option('DFOCC', 'OEPROP', 'TRUE') core.set_local_option('DFOCC', 'DO_SCS', 'FALSE') core.set_local_option('DFOCC', 'DO_SOS', 'FALSE') core.set_local_option('SCF', 'DF_INTS_IO', 'SAVE') # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified else: if ref_wfn.molecule().schoenflies_symbol() != 'c1': raise ValidationError(""" DFOCC does not make use of molecular symmetry: """ """reference wavefunction must be C1.\n""") core.print_out(" Constructing Basis Sets for DFOCC...\n\n") scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis) aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_CC", core.get_global_option("DF_BASIS_CC"), "RIFIT", core.get_global_option("BASIS")) ref_wfn.set_basisset("DF_BASIS_CC", aux_basis) if core.get_option('SCF', 'REFERENCE') == 'ROHF': ref_wfn.semicanonicalize() dfocc_wfn = core.dfocc(ref_wfn) # Shove variables into global space # TODO: Make other methods in DFOCC update all variables, then add them to the list. Adding now, risks setting outdated information. if name in ['mp2', 'omp2']: for k, v in dfocc_wfn.variables().items(): core.set_variable(k, v) optstash.restore() return dfocc_wfn def run_qchf(name, **kwargs): """Function encoding sequence of PSI module calls for an quadratically-convergent SCF computation. """ dtl = docs_table_link("dummy", "occ_nonoo") optstash = p4util.OptionsState( ['SCF', 'DF_INTS_IO'], ['DF_BASIS_SCF'], ['SCF', 'FAIL_ON_MAXITER'], ['MAXITER'], ['DFOCC', 'ORB_OPT'], ['DFOCC', 'WFN_TYPE'], ['DFOCC', 'QCHF'], ['DFOCC', 'E_CONVERGENCE']) # throw exception for CONV if (corl_type := method_algorithm_type(name).now) not in ["DISK_DF", "DF", "CD"]: raise ValidationError(f"Invalid type {corl_type} for QCHF energy through `run_qchf`. See Capabilities Table at {dtl}") core.set_local_option('DFOCC', 'ORB_OPT', 'TRUE') core.set_local_option('DFOCC', 'WFN_TYPE', 'QCHF') core.set_local_option('DFOCC', 'QCHF', 'TRUE') core.set_local_option('DFOCC', 'E_CONVERGENCE', 8) core.set_local_option('SCF', 'DF_INTS_IO', 'SAVE') core.set_local_option('SCF', 'FAIL_ON_MAXITER', False) core.set_local_option('SCF', 'MAXITER', 1) # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified else: if ref_wfn.molecule().schoenflies_symbol() != 'c1': raise ValidationError(""" QCHF does not make use of molecular symmetry: """ """reference wavefunction must be C1.\n""") if core.get_option('SCF', 'REFERENCE') == 'ROHF': ref_wfn.semicanonicalize() dfocc_wfn = core.dfocc(ref_wfn) # Shove variables into global space for k, v in dfocc_wfn.variables().items(): core.set_variable(k, v) optstash.restore() return dfocc_wfn def run_occ(name, **kwargs): """Function encoding sequence of PSI module calls for a conventional integral (O)MPN computation """ # Stash these options so we can reload them at computation end. optstash = p4util.OptionsState( ['OCC', 'SPIN_SCALE_TYPE'], ['OCC', 'ORB_OPT'], ['OCC', 'WFN_TYPE']) director = { "mp2": {"wfn_type": "OMP2", "orb_opt": "FALSE", "spin_scale_type": "NONE", }, "scs-mp2": {"wfn_type": "OMP2", "orb_opt": "FALSE", "spin_scale_type": "SCS", }, "scs(n)-mp2": {"wfn_type": "OMP2", "orb_opt": "FALSE", "spin_scale_type": "SCSN", }, "scs-mp2-vdw": {"wfn_type": "OMP2", "orb_opt": "FALSE", "spin_scale_type": "SCSVDW",}, "sos-mp2": {"wfn_type": "OMP2", "orb_opt": "FALSE", "spin_scale_type": "SOS", }, "sos-pi-mp2": {"wfn_type": "OMP2", "orb_opt": "FALSE", "spin_scale_type": "SOSPI", }, "custom-scs-mp2": {"wfn_type": "OMP2", "orb_opt": "FALSE", "spin_scale_type": "CUSTOM",}, "omp2": {"wfn_type": "OMP2", "orb_opt": "TRUE", "spin_scale_type": "NONE", }, "scs-omp2": {"wfn_type": "OMP2", "orb_opt": "TRUE", "spin_scale_type": "SCS", }, "sos-omp2": {"wfn_type": "OMP2", "orb_opt": "TRUE", "spin_scale_type": "SOS", }, "custom-scs-omp2": {"wfn_type": "OMP2", "orb_opt": "TRUE", "spin_scale_type": "CUSTOM",}, "mp2.5": {"wfn_type": "OMP2.5", "orb_opt": "FALSE", "spin_scale_type": "NONE", }, "custom-scs-mp2.5": {"wfn_type": "OMP2.5", "orb_opt": "FALSE", "spin_scale_type": "CUSTOM",}, "omp2.5": {"wfn_type": "OMP2.5", "orb_opt": "TRUE", "spin_scale_type": "NONE", }, "custom-scs-omp2.5": {"wfn_type": "OMP2.5", "orb_opt": "TRUE", "spin_scale_type": "CUSTOM",}, "mp3": {"wfn_type": "OMP3", "orb_opt": "FALSE", "spin_scale_type": "NONE", }, "scs-mp3": {"wfn_type": "OMP3", "orb_opt": "FALSE", "spin_scale_type": "SCS", }, "custom-scs-mp3": {"wfn_type": "OMP3", "orb_opt": "FALSE", "spin_scale_type": "CUSTOM",}, "omp3": {"wfn_type": "OMP3", "orb_opt": "TRUE", "spin_scale_type": "NONE", }, "scs-omp3": {"wfn_type": "OMP3", "orb_opt": "TRUE", "spin_scale_type": "SCS", }, "sos-omp3": {"wfn_type": "OMP3", "orb_opt": "TRUE", "spin_scale_type": "SOS", }, "custom-scs-omp3": {"wfn_type": "OMP3", "orb_opt": "TRUE", "spin_scale_type": "CUSTOM",}, "remp2": {"wfn_type": "REMP", "orb_opt": "FALSE", "spin_scale_type": "NONE", }, "oremp2": {"wfn_type": "OREMP", "orb_opt": "TRUE", "spin_scale_type": "NONE", }, "lccd": {"wfn_type": "OCEPA", "orb_opt": "FALSE", "spin_scale_type": "NONE", }, "custom-scs-lccd": {"wfn_type": "OCEPA", "orb_opt": "FALSE", "spin_scale_type": "CUSTOM",}, "olccd": {"wfn_type": "OCEPA", "orb_opt": "TRUE", "spin_scale_type": "NONE", }, "custom-scs-olccd": {"wfn_type": "OCEPA", "orb_opt": "TRUE", "spin_scale_type": "CUSTOM",}, } if name not in director: raise ValidationError(f"Invalid method {name} for OCC energy") for k, v in director[name].items(): core.set_local_option("OCC", k.upper(), v) # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # C1 certified # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) if core.get_option('SCF', 'REFERENCE') == 'ROHF': ref_wfn.semicanonicalize() occ_wfn = core.occ(ref_wfn) # Shove variables into global space keep_custom_spin_scaling = core.has_option_changed("OCC", "SS_SCALE") or core.has_option_changed("OCC", "OS_SCALE") for k, v in occ_wfn.variables().items(): # Custom spin component scaling variables are meaningless if custom scalings hasn't been set. Delete them. if k.startswith("CUSTOM SCS") and not keep_custom_spin_scaling: occ_wfn.del_variable(k) else: core.set_variable(k, v) optstash.restore() return occ_wfn def run_occ_gradient(name, **kwargs): """Function encoding sequence of PSI module calls for a conventional integral (O)MPN computation """ optstash = p4util.OptionsState( ['OCC', 'ORB_OPT'], ['OCC', 'WFN_TYPE'], ['OCC', 'DO_SCS'], ['OCC', 'DO_SOS'], ['GLOBALS', 'DERTYPE']) if core.get_global_option('SCF_TYPE') in ['CD', 'DF', 'MEM_DF', 'DISK_DF']: raise ValidationError('OCC gradients need conventional SCF reference.') director = { "mp2": {"wfn_type": "OMP2", "orb_opt": "FALSE",}, "omp2": {"wfn_type": "OMP2", "orb_opt": "TRUE", }, "conv-omp2": {"wfn_type": "OMP2", "orb_opt": "TRUE", }, "mp2.5": {"wfn_type": "OMP2.5", "orb_opt": "FALSE",}, "omp2.5": {"wfn_type": "OMP2.5", "orb_opt": "TRUE", }, "mp3": {"wfn_type": "OMP3", "orb_opt": "FALSE",}, "omp3": {"wfn_type": "OMP3", "orb_opt": "TRUE", }, "oremp2": {"wfn_type": "OREMP", "orb_opt": "TRUE", }, "lccd": {"wfn_type": "OCEPA", "orb_opt": "FALSE",}, "olccd": {"wfn_type": "OCEPA", "orb_opt": "TRUE", }, } if name not in director: raise ValidationError(f"Invalid method {name} for OCC gradient") for k, v in director[name].items(): core.set_local_option("OCC", k.upper(), v) core.set_global_option('DERTYPE', 'FIRST') # locking out SCS through explicit keyword setting # * so that current energy must match call # * since grads not avail for scs core.set_local_option('OCC', 'SPIN_SCALE_TYPE', 'NONE') # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # C1 certified # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) if core.get_option('SCF', 'REFERENCE') == 'ROHF': ref_wfn.semicanonicalize() occ_wfn = core.occ(ref_wfn) derivobj = core.Deriv(occ_wfn) grad = derivobj.compute() occ_wfn.set_gradient(grad) occ_wfn.set_variable(f"{name.upper()} TOTAL GRADIENT", grad) # Shove variables into global space keep_custom_spin_scaling = core.has_option_changed("OCC", "SS_SCALE") or core.has_option_changed("OCC", "OS_SCALE") for k, v in occ_wfn.variables().items(): # Custom spin component scaling variables are meaningless if custom scalings hasn't been set. Delete them. if k.startswith("CUSTOM SCS") and not keep_custom_spin_scaling: occ_wfn.del_variable(k) else: core.set_variable(k, v) optstash.restore() return occ_wfn def run_scf(name, **kwargs): """Function encoding sequence of PSI module calls for a self-consistent-field theory (HF & DFT) calculation. """ optstash_mp2 = p4util.OptionsState( ['DF_BASIS_MP2'], ['DFMP2', 'MP2_OS_SCALE'], ['DFMP2', 'MP2_SS_SCALE']) dft_func = False if "dft_functional" in kwargs: dft_func = True optstash_scf = proc_util.scf_set_reference_local(name, is_dft=dft_func) # See if we're doing TDSCF after, keep JK if so if sum(core.get_option("SCF", "TDSCF_STATES")) > 0: core.set_local_option("SCF", "SAVE_JK", True) # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') scf_wfn = scf_helper(name, post_scf=False, **kwargs) returnvalue = scf_wfn.energy() ssuper = scf_wfn.functional() if ssuper.is_c_hybrid(): # throw exception for CONV/CD MP2 if (mp2_type := core.get_global_option("MP2_TYPE")) != "DF": raise ValidationError(f"Invalid MP2 type {mp2_type} for DF-DFT energy. See capabilities Table.") core.tstart() aux_basis = core.BasisSet.build(scf_wfn.molecule(), "DF_BASIS_MP2", core.get_option("DFMP2", "DF_BASIS_MP2"), "RIFIT", core.get_global_option('BASIS'), puream=-1) scf_wfn.set_basisset("DF_BASIS_MP2", aux_basis) if ssuper.is_c_scs_hybrid(): core.set_local_option('DFMP2', 'MP2_OS_SCALE', ssuper.c_os_alpha()) core.set_local_option('DFMP2', 'MP2_SS_SCALE', ssuper.c_ss_alpha()) dfmp2_wfn = core.dfmp2(scf_wfn) dfmp2_wfn.compute_energy() vdh = dfmp2_wfn.variable('CUSTOM SCS-MP2 CORRELATION ENERGY') else: dfmp2_wfn = core.dfmp2(scf_wfn) dfmp2_wfn.compute_energy() vdh = ssuper.c_alpha() * dfmp2_wfn.variable('MP2 CORRELATION ENERGY') # remove misleading MP2 psivars computed with DFT, not HF, reference for var in dfmp2_wfn.variables(): if var.startswith('MP2 ') and ssuper.name() not in ['MP2D']: scf_wfn.del_variable(var) scf_wfn.set_variable("DOUBLE-HYBRID CORRECTION ENERGY", vdh) # P::e SCF scf_wfn.set_variable("{} DOUBLE-HYBRID CORRECTION ENERGY".format(ssuper.name()), vdh) returnvalue += vdh scf_wfn.set_variable("DFT TOTAL ENERGY", returnvalue) # P::e SCF for pv, pvv in scf_wfn.variables().items(): if pv.endswith('DISPERSION CORRECTION ENERGY') and pv.startswith(ssuper.name()): fctl_plus_disp_name = pv.split()[0] scf_wfn.set_variable(fctl_plus_disp_name + ' TOTAL ENERGY', returnvalue) break else: scf_wfn.set_variable('{} TOTAL ENERGY'.format(ssuper.name()), returnvalue) scf_wfn.set_variable('CURRENT ENERGY', returnvalue) scf_wfn.set_energy(returnvalue) core.print_out('\n\n') core.print_out(' %s Energy Summary\n' % (name.upper())) core.print_out(' ' + '-' * (15 + len(name)) + '\n') core.print_out(' DFT Reference Energy = %22.16lf\n' % (returnvalue - vdh)) core.print_out(' Scaled MP2 Correlation = %22.16lf\n' % (vdh)) core.print_out(' @Final double-hybrid DFT total energy = %22.16lf\n\n' % (returnvalue)) core.tstop() if ssuper.name() == 'MP2D': for pv, pvv in dfmp2_wfn.variables().items(): scf_wfn.set_variable(pv, pvv) # Conversely, remove DFT qcvars from MP2D for var in scf_wfn.variables(): if 'DFT ' in var or 'DOUBLE-HYBRID ' in var: scf_wfn.del_variable(var) # DFT groups dispersion with SCF. Reshuffle so dispersion with MP2 for MP2D. for pv in ['SCF TOTAL ENERGY', 'SCF ITERATION ENERGY', 'MP2 TOTAL ENERGY']: scf_wfn.set_variable(pv, scf_wfn.variable(pv) - scf_wfn.variable('DISPERSION CORRECTION ENERGY')) scf_wfn.set_variable('MP2D CORRELATION ENERGY', scf_wfn.variable('MP2 CORRELATION ENERGY') + scf_wfn.variable('DISPERSION CORRECTION ENERGY')) scf_wfn.set_variable('MP2D TOTAL ENERGY', scf_wfn.variable('MP2D CORRELATION ENERGY') + scf_wfn.variable('HF TOTAL ENERGY')) scf_wfn.set_variable('CURRENT ENERGY', scf_wfn.variable('MP2D TOTAL ENERGY')) scf_wfn.set_variable('CURRENT CORRELATION ENERGY', scf_wfn.variable('MP2D CORRELATION ENERGY')) scf_wfn.set_variable('CURRENT REFERENCE ENERGY', scf_wfn.variable('SCF TOTAL ENERGY')) # Shove variables into global space for k, v in scf_wfn.variables().items(): core.set_variable(k, v) optstash_scf.restore() optstash_mp2.restore() return scf_wfn def run_scf_gradient(name, **kwargs): """Function encoding sequence of PSI module calls for a SCF gradient calculation. """ dft_func = False if "dft_functional" in kwargs: dft_func = True optstash = proc_util.scf_set_reference_local(name, is_dft=dft_func) # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = run_scf(name, **kwargs) if core.get_option('SCF', 'REFERENCE') in ['ROHF', 'CUHF']: ref_wfn.semicanonicalize() if hasattr(ref_wfn, "_disp_functor"): disp_grad = ref_wfn._disp_functor.compute_gradient(ref_wfn.molecule(), ref_wfn) ref_wfn.set_variable("-D Gradient", disp_grad) grad = core.scfgrad(ref_wfn) ref_wfn.set_gradient(grad) ref_wfn.set_variable("SCF TOTAL GRADIENT", grad) # P::e SCF if ref_wfn.functional().needs_xc(): ref_wfn.set_variable("DFT TOTAL GRADIENT", grad) # overwritten later for DH -- TODO when DH gradients # P::e SCF else: ref_wfn.set_variable("HF TOTAL GRADIENT", grad) # P::e SCF # Shove variables into global space for k, v in ref_wfn.variables().items(): core.set_variable(k, v) optstash.restore() return ref_wfn def run_scf_hessian(name, **kwargs): """Function encoding sequence of PSI module calls for an SCF hessian calculation. """ optstash = proc_util.scf_set_reference_local(name) # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = run_scf(name, **kwargs) badref = core.get_option('SCF', 'REFERENCE') in ['ROHF', 'CUHF'] badint = core.get_global_option('SCF_TYPE') in [ 'CD', 'OUT_OF_CORE'] if badref or badint: raise ValidationError("Only RHF/UHF/RKS/UKS Hessians are currently implemented. SCF_TYPE either CD or OUT_OF_CORE not supported") if hasattr(ref_wfn, "_disp_functor"): disp_hess = ref_wfn._disp_functor.compute_hessian(ref_wfn.molecule(), ref_wfn) ref_wfn.set_variable("-D Hessian", disp_hess) H = core.scfhess(ref_wfn) ref_wfn.set_hessian(H) ref_wfn.set_variable("SCF TOTAL HESSIAN", H) # P::e SCF if ref_wfn.functional().needs_xc(): ref_wfn.set_variable("DFT TOTAL HESSIAN", H) # overwritten later for DH -- TODO when DH Hessians # P::e SCF else: ref_wfn.set_variable("HF TOTAL HESSIAN", H) # P::e SCF # Shove variables into global space for k, v in ref_wfn.variables().items(): core.set_variable(k, v) optstash.restore() return ref_wfn def run_mcscf(name, **kwargs): """Function encoding sequence of PSI module calls for a multiconfigurational self-consistent-field calculation. """ # Make sure the molecule the user provided is the active one mcscf_molecule = kwargs.get('molecule', core.get_active_molecule()) mcscf_molecule.update_geometry() if 'ref_wfn' in kwargs: raise ValidationError("It is not possible to pass run_mcscf a reference wavefunction") new_wfn = core.Wavefunction.build(mcscf_molecule, core.get_global_option('BASIS')) return core.mcscf(new_wfn) def run_dfmp2_gradient(name, **kwargs): """Function encoding sequence of PSI module calls for a DFMP2 gradient calculation. """ optstash = p4util.OptionsState( ['DF_BASIS_SCF'], ['DF_BASIS_MP2'], ['SCF_TYPE']) # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') core.print_out(""" SCF Algorithm Type (re)set to DF.\n""") if "DF" not in core.get_global_option('SCF_TYPE'): raise ValidationError('DF-MP2 gradients need DF-SCF reference.') # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # C1 certified core.tstart() core.print_out('\n') p4util.banner('DFMP2') core.print_out('\n') aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_MP2", core.get_option("DFMP2", "DF_BASIS_MP2"), "RIFIT", core.get_global_option('BASIS')) ref_wfn.set_basisset("DF_BASIS_MP2", aux_basis) dfmp2_wfn = core.dfmp2(ref_wfn) grad = dfmp2_wfn.compute_gradient() dfmp2_wfn.set_gradient(grad) # Shove variables into global space dfmp2_wfn.set_variable("MP2 TOTAL GRADIENT", grad) # P::e DFMP2 dfmp2_wfn.set_variable('CURRENT ENERGY', dfmp2_wfn.variable('MP2 TOTAL ENERGY')) dfmp2_wfn.set_variable('CURRENT CORRELATION ENERGY', dfmp2_wfn.variable('MP2 CORRELATION ENERGY')) for k, v in dfmp2_wfn.variables().items(): core.set_variable(k, v) optstash.restore() core.tstop() return dfmp2_wfn def run_dfmp2d_gradient(name, **kwargs): """Encode MP2-D method.""" dfmp2_wfn = run_dfmp2_gradient('mp2', **kwargs) wfn_grad = dfmp2_wfn.gradient().clone() _, _disp_functor = build_functional_and_disp('MP2D', restricted=True) disp_grad = _disp_functor.compute_gradient(dfmp2_wfn.molecule(), dfmp2_wfn) wfn_grad.add(disp_grad) dfmp2_wfn.set_gradient(wfn_grad) dfmp2_wfn.set_variable('MP2D CORRELATION ENERGY', dfmp2_wfn.variable('MP2 CORRELATION ENERGY') + dfmp2_wfn.variable('DISPERSION CORRECTION ENERGY')) dfmp2_wfn.set_variable('MP2D TOTAL ENERGY', dfmp2_wfn.variable('MP2D CORRELATION ENERGY') + dfmp2_wfn.variable('HF TOTAL ENERGY')) dfmp2_wfn.set_variable('CURRENT ENERGY', dfmp2_wfn.variable('MP2D TOTAL ENERGY')) dfmp2_wfn.set_variable('CURRENT CORRELATION ENERGY', dfmp2_wfn.variable('MP2D CORRELATION ENERGY')) # Shove variables into global space for k, v in dfmp2_wfn.variables().items(): core.set_variable(k, v) return dfmp2_wfn def run_ccenergy(name, **kwargs): """Function encoding sequence of PSI module calls for a CCSD, CC2, and CC3 calculation. """ optstash = p4util.OptionsState( ['TRANSQT2', 'WFN'], ['CCSORT', 'WFN'], ['CCENERGY', 'WFN']) if name == 'ccsd': core.set_local_option('TRANSQT2', 'WFN', 'CCSD') core.set_local_option('CCSORT', 'WFN', 'CCSD') core.set_local_option('CCTRANSORT', 'WFN', 'CCSD') core.set_local_option('CCENERGY', 'WFN', 'CCSD') elif name == 'ccsd(t)': core.set_local_option('TRANSQT2', 'WFN', 'CCSD_T') core.set_local_option('CCSORT', 'WFN', 'CCSD_T') core.set_local_option('CCTRANSORT', 'WFN', 'CCSD_T') core.set_local_option('CCENERGY', 'WFN', 'CCSD_T') elif name == 'a-ccsd(t)': core.set_local_option('TRANSQT2', 'WFN', 'CCSD_AT') core.set_local_option('CCSORT', 'WFN', 'CCSD_AT') core.set_local_option('CCTRANSORT', 'WFN', 'CCSD_AT') core.set_local_option('CCENERGY', 'WFN', 'CCSD_AT') core.set_local_option('CCHBAR', 'WFN', 'CCSD_AT') core.set_local_option('CCLAMBDA', 'WFN', 'CCSD_AT') elif name == 'cc2': core.set_local_option('TRANSQT2', 'WFN', 'CC2') core.set_local_option('CCSORT', 'WFN', 'CC2') core.set_local_option('CCTRANSORT', 'WFN', 'CC2') core.set_local_option('CCENERGY', 'WFN', 'CC2') elif name == 'cc3': core.set_local_option('TRANSQT2', 'WFN', 'CC3') core.set_local_option('CCSORT', 'WFN', 'CC3') core.set_local_option('CCTRANSORT', 'WFN', 'CC3') core.set_local_option('CCENERGY', 'WFN', 'CC3') elif name == 'eom-cc2': core.set_local_option('TRANSQT2', 'WFN', 'EOM_CC2') core.set_local_option('CCSORT', 'WFN', 'EOM_CC2') core.set_local_option('CCTRANSORT', 'WFN', 'EOM_CC2') core.set_local_option('CCENERGY', 'WFN', 'EOM_CC2') elif name == 'eom-ccsd': core.set_local_option('TRANSQT2', 'WFN', 'EOM_CCSD') core.set_local_option('CCSORT', 'WFN', 'EOM_CCSD') core.set_local_option('CCTRANSORT', 'WFN', 'EOM_CCSD') core.set_local_option('CCENERGY', 'WFN', 'EOM_CCSD') # Call a plain energy('ccenergy') and have full control over options, incl. wfn elif name == 'ccenergy': pass # Bypass routine scf if user did something special to get it to converge ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # C1 certified if core.get_global_option("CC_TYPE") == "DF": aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_CC", core.get_global_option("DF_BASIS_CC"), "RIFIT", core.get_global_option("BASIS")) ref_wfn.set_basisset("DF_BASIS_CC", aux_basis) # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) # Obtain semicanonical orbitals if ((core.get_option('SCF', 'REFERENCE') == 'ROHF') and ((name in ['ccsd(t)', 'a-ccsd(t)', 'cc2', 'cc3', 'eom-cc2', 'eom-cc3']) or core.get_option('CCTRANSORT', 'SEMICANONICAL'))): ref_wfn.semicanonicalize() if core.get_global_option('RUN_CCTRANSORT'): core.cctransort(ref_wfn) else: try: from psi4.driver.pasture import addins addins.ccsort_transqt2(ref_wfn) except Exception: raise PastureRequiredError("RUN_CCTRANSORT") ccwfn = core.ccenergy(ref_wfn) if core.get_global_option('PE'): ccwfn.pe_state = ref_wfn.pe_state if name == 'a-ccsd(t)': core.cchbar(ref_wfn) lambdawfn = core.cclambda(ref_wfn) for k, v in lambdawfn.variables().items(): ccwfn.set_variable(k, v) optstash.restore() return ccwfn def run_ccenergy_gradient(name, **kwargs): """Function encoding sequence of PSI module calls for a CCSD and CCSD(T) gradient calculation. """ optstash = p4util.OptionsState( ['GLOBALS', 'DERTYPE'], ['CCLAMBDA', 'WFN'], ['CCDENSITY', 'WFN']) core.set_global_option('DERTYPE', 'FIRST') if core.get_global_option('FREEZE_CORE') not in ["FALSE", "0"]: raise ValidationError('Frozen core is not available for the CC gradients.') ccwfn = run_ccenergy(name, **kwargs) if name == 'cc2': core.set_local_option('CCHBAR', 'WFN', 'CC2') core.set_local_option('CCLAMBDA', 'WFN', 'CC2') core.set_local_option('CCDENSITY', 'WFN', 'CC2') if name == 'ccsd': core.set_local_option('CCLAMBDA', 'WFN', 'CCSD') core.set_local_option('CCDENSITY', 'WFN', 'CCSD') elif name == 'ccsd(t)': core.set_local_option('CCLAMBDA', 'WFN', 'CCSD_T') core.set_local_option('CCDENSITY', 'WFN', 'CCSD_T') core.cchbar(ccwfn) core.cclambda(ccwfn) core.ccdensity(ccwfn) derivobj = core.Deriv(ccwfn) grad = derivobj.compute() del derivobj ccwfn.set_gradient(grad) ccwfn.set_variable(f"{name.upper()} TOTAL GRADIENT", grad) core.set_variable(f"{name.upper()} TOTAL GRADIENT", grad) core.set_variable("CURRENT GRADIENT", grad) optstash.restore() return ccwfn def run_bccd(name, **kwargs): """Function encoding sequence of PSI module calls for a Brueckner CCD calculation. """ dtl = docs_table_link("dummy", "ccenergy") optstash = p4util.OptionsState( ['TRANSQT2', 'WFN'], ['CCSORT', 'WFN'], ['CCENERGY', 'WFN']) if name == 'bccd': core.set_local_option('TRANSQT2', 'WFN', 'BCCD') core.set_local_option('CCSORT', 'WFN', 'BCCD') core.set_local_option('CCTRANSORT', 'WFN', 'BCCD') core.set_local_option('CCENERGY', 'WFN', 'BCCD') elif name == 'bccd(t)': core.set_local_option('TRANSQT2', 'WFN', 'BCCD_T') core.set_local_option('CCSORT', 'WFN', 'BCCD_T') core.set_local_option('CCENERGY', 'WFN', 'BCCD_T') core.set_local_option('CCTRANSORT', 'WFN', 'BCCD_T') core.set_local_option('CCTRIPLES', 'WFN', 'BCCD_T') else: raise ValidationError("proc.py:run_bccd name %s not recognized" % name) if (corl_type := method_algorithm_type(name).now) != "CONV": raise ValidationError(f"Invalid type {corl_type} for CCENERGY energy through `run_bccd`. See Capabilities Table at {dtl}") # Bypass routine scf if user did something special to get it to converge ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # C1 certified # Needed for (T). if (core.get_option('SCF', 'REFERENCE') == 'ROHF'): ref_wfn.semicanonicalize() # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) core.set_local_option('CCTRANSORT', 'DELETE_TEI', 'false') bcc_iter_cnt = 0 if (core.get_global_option("RUN_CCTRANSORT")): sort_func = core.cctransort else: try: from psi4.driver.pasture import addins core.set_local_option('TRANSQT2', 'DELETE_TEI', 'false') sort_func = addins.ccsort_transqt2 except Exception: raise PastureRequiredError("RUN_CCTRANSORT") hold_qcvars = { "MP2 TOTAL ENERGY": None, "MP2 CORRELATION ENERGY": None, "MP2 SAME-SPIN CORRELATION ENERGY": None, "MP2 OPPOSITE-SPIN CORRELATION ENERGY": None, "MP2 SINGLES ENERGY": None, "MP2 DOUBLES ENERGY": None, "CCSD TOTAL ENERGY": None, "CCSD CORRELATION ENERGY": None, "CCSD SAME-SPIN CORRELATION ENERGY": None, "CCSD OPPOSITE-SPIN CORRELATION ENERGY": None, "CCSD SINGLES ENERGY": None, "CCSD DOUBLES ENERGY": None, } while True: sort_func(ref_wfn) ref_wfn = core.ccenergy(ref_wfn) core.print_out('Brueckner convergence check: %s\n' % bool(core.variable('BRUECKNER CONVERGED'))) if core.variable('BRUECKNER CONVERGED'): break if bcc_iter_cnt >= core.get_option('CCENERGY', 'BCCD_MAXITER'): core.print_out("\n\nWarning! BCCD did not converge within the maximum number of iterations.") core.print_out("You can increase the number of BCCD iterations by changing BCCD_MAXITER.\n\n") break bcc_iter_cnt += 1 if bcc_iter_cnt == 1: for pv in hold_qcvars: hold_qcvars[pv] = ref_wfn.variable(pv) ref_wfn.set_variable("BCCD TOTAL ENERGY", ref_wfn.variable("CCSD TOTAL ENERGY")) ref_wfn.set_variable("BCCD CORRELATION ENERGY", ref_wfn.variable("BCCD TOTAL ENERGY") - ref_wfn.variable("SCF TOTAL ENERGY")) ref_wfn.set_variable("CURRENT CORRELATION ENERGY", ref_wfn.variable("BCCD CORRELATION ENERGY")) # copy back canonical MP2 and CCSD from initial iteration for pv, v in hold_qcvars.items(): if v is not None: ref_wfn.set_variable(pv, v) core.set_variable(pv, v) if name == 'bccd(t)': core.cctriples(ref_wfn) ref_wfn.set_variable("B(T) CORRECTION ENERGY", ref_wfn.variable("(T) CORRECTION ENERGY")) ref_wfn.set_variable("BCCD(T) TOTAL ENERGY", ref_wfn.variable("CCSD(T) TOTAL ENERGY")) ref_wfn.set_variable("BCCD(T) CORRELATION ENERGY", ref_wfn.variable("BCCD(T) TOTAL ENERGY") - ref_wfn.variable("SCF TOTAL ENERGY")) # note != CCSD(T) CORRELATION ENERGY ref_wfn.set_variable("CURRENT CORRELATION ENERGY", ref_wfn.variable("BCCD(T) CORRELATION ENERGY")) for pv in ["(T) CORRECTION ENERGY", "CCSD(T) TOTAL ENERGY", "CCSD(T) CORRELATION ENERGY"]: ref_wfn.del_variable(pv) core.del_variable(pv) for pv in [ "BCCD TOTAL ENERGY", "BCCD CORRELATION ENERGY", "B(T) CORRECTION ENERGY", "BCCD(T) TOTAL ENERGY", "BCCD(T) CORRELATION ENERGY", "CURRENT CORRELATION ENERGY", ]: if ref_wfn.has_variable(pv): core.set_variable(pv, ref_wfn.variable(pv)) # Notes # * BCCD or BCCD(T) correlation energy is total energy of last Brueckner iteration minus HF energy of first Brueckner iteration optstash.restore() return ref_wfn def run_tdscf_excitations(wfn,**kwargs): states = core.get_option("SCF","TDSCF_STATES") # some sanity checks if sum(states) == 0: raise ValidationError("TDSCF: No states requested in TDSCF_STATES") # unwrap 1-membered list of states, regardless of symmetry # we will apportion states per irrep later on if len(states) == 1: states = states[0] # Tie TDSCF_R_CONVERGENCE to D_CONVERGENCE in SCF reference if core.has_option_changed('SCF', 'TDSCF_R_CONVERGENCE'): r_convergence = core.get_option('SCF', 'TDSCF_R_CONVERGENCE') else: r_convergence = min(1.e-4, core.get_option('SCF', 'D_CONVERGENCE') * 1.e2) # "anonymous" return value, as we stash observables in the passed Wavefunction object internally _ = response.scf_response.tdscf_excitations(wfn, states=states, triplets=core.get_option("SCF", "TDSCF_TRIPLETS"), tda=core.get_option("SCF", "TDSCF_TDA"), r_convergence=r_convergence, maxiter=core.get_option("SCF", "TDSCF_MAXITER"), guess=core.get_option("SCF", "TDSCF_GUESS"), verbose=core.get_option("SCF", "TDSCF_PRINT"), coeff_cutoff=core.get_option("SCF", "TDSCF_COEFF_CUTOFF"), tdm_print=core.get_option("SCF", "TDSCF_TDM_PRINT")) # Shove variables into global space for k, v in wfn.variables().items(): core.set_variable(k, v) return wfn def run_tdscf_energy(name, **kwargs): # Get a wfn in case we aren't given one ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: if name is None: raise ValidationError("TDSCF: No reference wave function!") else: ref_wfn = run_scf(name.strip('td-'), **kwargs) return run_tdscf_excitations(ref_wfn, **kwargs) def run_scf_property(name, **kwargs): """Function encoding sequence of PSI module calls for SCF calculations. This is a simple alias to :py:func:`~proc.run_scf` since SCF properties all handled through oeprop. """ core.tstart() optstash = proc_util.scf_set_reference_local(name) properties = kwargs.pop('properties') # What response do we need? response_list_vals = list(response.scf_response.property_dicts) oeprop_list_vals = core.OEProp.valid_methods oe_properties = [] linear_response = [] unknown_property = [] for prop in properties: prop = prop.upper() if prop in response_list_vals: linear_response.append(prop) elif (prop in oeprop_list_vals) or ("MULTIPOLE(" in prop): oe_properties.append(prop) else: unknown_property.append(prop) if "DIPOLE" not in oe_properties: oe_properties.append("DIPOLE") # Throw if we dont know what something is if len(unknown_property): complete_options = oeprop_list_vals + response_list_vals alt_method_name = p4util.text.find_approximate_string_matches(unknown_property[0], complete_options, 2) alternatives = "" if len(alt_method_name) > 0: alternatives = " Did you mean? %s" % (" ".join(alt_method_name)) raise ValidationError("SCF Property: Feature '%s' is not recognized. %s" % (unknown_property[0], alternatives)) # Validate OEProp if len(oe_properties): proc_util.oeprop_validator(oe_properties) if len(linear_response): optstash_jk = p4util.OptionsState(["SAVE_JK"]) core.set_global_option("SAVE_JK", True) # Compute the Wavefunction scf_wfn = run_scf(name, scf_do_properties=False, do_timer=False, **kwargs) # Run OEProp oe = core.OEProp(scf_wfn) oe.set_title(name.upper()) for prop in oe_properties: oe.add(prop.upper()) oe.compute() scf_wfn.oeprop = oe core.set_variable("SCF DIPOLE", core.variable(name + " DIPOLE")) # P::e SCF # Run Linear Respsonse if len(linear_response): core.prepare_options_for_module("SCF") ret = response.scf_response.cpscf_linear_response(scf_wfn, *linear_response, conv_tol = core.get_global_option("SOLVER_CONVERGENCE"), max_iter = core.get_global_option("SOLVER_MAXITER"), print_lvl = (core.get_global_option("PRINT") + 1)) optstash_jk.restore() core.tstop() optstash.restore() return scf_wfn def run_cc_property(name, **kwargs): """Function encoding sequence of PSI module calls for all CC property calculations. """ optstash = p4util.OptionsState( ['WFN'], ['DERTYPE'], ['ONEPDM'], ['PROPERTY'], ['CCLAMBDA', 'R_CONVERGENCE'], ['CCEOM', 'R_CONVERGENCE'], ['CCEOM', 'E_CONVERGENCE']) # yapf:disable oneel_properties = core.OEProp.valid_methods twoel_properties = [] response_properties = ['POLARIZABILITY', 'ROTATION', 'ROA', 'ROA_TENSOR'] excited_properties = ['OSCILLATOR_STRENGTH', 'ROTATIONAL_STRENGTH'] one = [] two = [] response = [] excited = [] invalid = [] if 'properties' in kwargs: properties = kwargs['properties'] for prop in properties: prop = prop.upper() if prop in oneel_properties: one.append(prop) elif prop in twoel_properties: two.append(prop) elif prop in response_properties: response.append(prop) elif prop in excited_properties: excited.append(prop) else: invalid.append(prop) else: raise ValidationError("""The "properties" keyword is required with the property() function.""") # People are used to requesting dipole/quadrupole and getting dipole,quadrupole,mulliken_charges and NO_occupations if ('DIPOLE' in one) or ('QUADRUPOLE' in one): one = list(set(one + ['DIPOLE', 'QUADRUPOLE', 'MULLIKEN_CHARGES', 'NO_OCCUPATIONS'])) n_one = len(one) n_two = len(two) n_response = len(response) n_excited = len(excited) n_invalid = len(invalid) if n_invalid > 0: print("""The following properties are not currently supported: %s""" % invalid) if n_excited > 0 and (name not in ['eom-ccsd', 'eom-cc2']): raise ValidationError("""Excited state CC properties require EOM-CC2 or EOM-CCSD.""") if (name in ['eom-ccsd', 'eom-cc2']) and n_response > 0: raise ValidationError("""Cannot (yet) compute response properties for excited states.""") if 'roa' in response: # Perform distributed roa job run_roa(name, **kwargs) return # Don't do anything further if (n_one > 0 or n_two > 0) and (n_response > 0): print("""Computing both density- and response-based properties.""") if n_response > 0: if ("ref_wfn" in kwargs and not kwargs["ref_wfn"].same_a_b_orbs()) or core.get_option('SCF', 'REFERENCE') != 'RHF': raise ValidationError(f"Non-RHF CC response properties are not implemented.") if name in ['ccsd', 'cc2', 'eom-ccsd', 'eom-cc2']: this_name = name.upper().replace('-', '_') core.set_global_option('WFN', this_name) ccwfn = run_ccenergy(name, **kwargs) core.set_global_option('WFN', this_name) else: raise ValidationError(f"CC property name {name.upper()} not recognized") # Need cchbar for everything core.cchbar(ccwfn) # Need ccdensity at this point only for density-based props if n_one > 0 or n_two > 0: if name == 'eom-ccsd': core.set_global_option('WFN', 'EOM_CCSD') core.set_global_option('DERTYPE', 'NONE') core.cceom(ccwfn) elif name == 'eom-cc2': core.set_global_option('WFN', 'EOM_CC2') core.set_global_option('DERTYPE', 'NONE') core.cceom(ccwfn) core.set_global_option('DERTYPE', 'NONE') if core.get_option('CCDENSITY', 'OPDM_RELAX') or n_two > 0: # WARNING!!! A one-particle property computed _with_ a two-particle property will differ # from a one-particle property computed by itself. There are no two-particle properties at # present, so we can kick the issue further down the road. core.set_global_option('OPDM_ONLY', 'FALSE') else: core.set_global_option('OPDM_ONLY', 'TRUE') core.cclambda(ccwfn) core.ccdensity(ccwfn) # Need ccresponse only for response-type props if n_response > 0: core.set_global_option('DERTYPE', 'RESPONSE') core.cclambda(ccwfn) for prop in response: core.set_global_option('PROPERTY', prop) core.ccresponse(ccwfn) # Excited-state transition properties if n_excited > 0: if name == 'eom-ccsd': core.set_global_option('WFN', 'EOM_CCSD') elif name == 'eom-cc2': core.set_global_option('WFN', 'EOM_CC2') else: raise ValidationError("""Unknown excited-state CC wave function.""") core.set_global_option('DERTYPE', 'NONE') if core.get_option('CCDENSITY', 'OPDM_RELAX'): core.set_global_option('OPDM_ONLY', 'FALSE') else: core.set_global_option('OPDM_ONLY', 'TRUE') # Tight convergence unnecessary for transition properties core.set_local_option('CCLAMBDA', 'R_CONVERGENCE', 1e-4) core.set_local_option('CCEOM', 'R_CONVERGENCE', 1e-4) core.set_local_option('CCEOM', 'E_CONVERGENCE', 1e-5) core.cceom(ccwfn) core.cclambda(ccwfn) core.ccdensity(ccwfn) # => Make OEProp calls <= if n_one > 0: # ==> Initialize OEProp <== oe = core.OEProp(ccwfn) for oe_prop_name in one: oe.add(oe_prop_name.upper()) # ==> OEProp for the ground state <== # TODO: When Psi is Py 3.9+, transition to the removeprefix version. title = name.upper().replace("EOM-", "") #title = name.upper().removeprefix("EOM-") oe.set_title(title) set_of_names = {title + " {}", "CC {}"} if name.startswith("eom"): gs_h = 0 for h, i in enumerate(ccwfn.soccpi()): if i % 2: gs_h = gs_h ^ h ct = ccwfn.molecule().point_group().char_table() total_h_lbl = ct.gamma(0).symbol() gs_h_lbl = ct.gamma(gs_h).symbol() set_of_names.update({title + " ROOT 0 {}", "CC ROOT 0 {}", f"{title} ROOT 0 {{}} - {total_h_lbl} TRANSITION", f"CC ROOT 0 {{}} - {total_h_lbl} TRANSITION", f"{title} ROOT 0 ({gs_h_lbl}) {{}}", f"CC ROOT 0 ({gs_h_lbl}) {{}}", f"{title} ROOT 0 (IN {gs_h_lbl}) {{}}", f"CC ROOT 0 (IN {gs_h_lbl}) {{}}"}) oe.set_names(set_of_names) oe.compute() # ==> OEProp for Excited States <== if name.startswith('eom'): n_root_pi = core.get_global_option("ROOTS_PER_IRREP") for h in range(ccwfn.nirrep()): root_h_lbl = ct.gamma(h).symbol() trans_h_lbl = ct.gamma(h ^ gs_h).symbol() # Don't forget to count the ground state! for i in range(n_root_pi[h]): if h == gs_h: i += 1 root_title = title + f" ROOT {i} (IN {root_h_lbl})" oe.set_title(root_title) total_idx = ccwfn.total_index(i, h) set_of_names = {f"{title} ROOT {total_idx} {{}}", f"CC ROOT {total_idx} {{}}", f"{title} ROOT {total_idx} {{}} - {trans_h_lbl} TRANSITION", f"CC ROOT {total_idx} {{}} - {trans_h_lbl} TRANSITION", f"{title} ROOT {total_idx} ({root_h_lbl}) {{}}", f"CC ROOT {total_idx} ({root_h_lbl}) {{}}", f"{title} ROOT {i} (IN {root_h_lbl}) {{}}", f"CC ROOT {i} (IN {root_h_lbl}) {{}}"} oe.set_names(set_of_names) Da = ccwfn.get_density(root_title + " ALPHA") oe.set_Da_so(Da) if not ccwfn.same_a_b_dens(): Db = ccwfn.get_density(root_title + " BETA") oe.set_Db_so(Db) oe.compute() core.set_global_option('WFN', 'SCF') core.revoke_global_option_changed('WFN') core.set_global_option('DERTYPE', 'NONE') core.revoke_global_option_changed('DERTYPE') optstash.restore() return ccwfn def run_dfmp2_property(name, **kwargs): """Function encoding sequence of PSI module calls for a DFMP2 property calculation. """ optstash = p4util.OptionsState( ['DF_BASIS_SCF'], ['DF_BASIS_MP2'], ['ONEPDM'], ['OPDM_RELAX'], ['SCF_TYPE']) core.set_global_option('ONEPDM', 'TRUE') core.set_global_option('OPDM_RELAX', 'TRUE') # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') # local set insufficient b/c SCF option read in DFMP2 core.print_out(""" SCF Algorithm Type (re)set to DF.\n""") if 'DF' not in core.get_global_option('SCF_TYPE'): raise ValidationError('DF-MP2 properties need DF-SCF reference.') properties = kwargs.pop('properties') proc_util.oeprop_validator(properties) # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, scf_do_properties=False, use_c1=True, **kwargs) # C1 certified aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_MP2", core.get_option("DFMP2", "DF_BASIS_MP2"), "RIFIT", core.get_global_option('BASIS')) ref_wfn.set_basisset("DF_BASIS_MP2", aux_basis) core.tstart() core.print_out('\n') p4util.banner('DFMP2') core.print_out('\n') dfmp2_wfn = core.dfmp2(ref_wfn) grad = dfmp2_wfn.compute_gradient() if name == 'scs-mp2': dfmp2_wfn.set_variable('CURRENT ENERGY', dfmp2_wfn.variable('SCS-MP2 TOTAL ENERGY')) dfmp2_wfn.set_variable('CURRENT CORRELATION ENERGY', dfmp2_wfn.variable('SCS-MP2 CORRELATION ENERGY')) elif name == 'mp2': dfmp2_wfn.set_variable('CURRENT ENERGY', dfmp2_wfn.variable('MP2 TOTAL ENERGY')) dfmp2_wfn.set_variable('CURRENT CORRELATION ENERGY', dfmp2_wfn.variable('MP2 CORRELATION ENERGY')) # Run OEProp oe = core.OEProp(dfmp2_wfn) oe.set_title(name.upper()) for prop in properties: oe.add(prop.upper()) oe.compute() dfmp2_wfn.oeprop = oe # Shove variables into global space for k, v in dfmp2_wfn.variables().items(): core.set_variable(k, v) optstash.restore() core.tstop() return dfmp2_wfn def _clean_detci(keep: bool=True): psioh = core.IOManager.shared_object() psio = core.IO.shared_object() cifl = core.get_option("DETCI", "CI_FILE_START") for fl in range(cifl, cifl + 4): if psio.open_check(fl): psio.close(fl, keep) def run_detci_property(name, **kwargs): """Function encoding sequence of PSI module calls for a configuration interaction calculation, namely FCI, CIn, MPn, and ZAPTn, computing properties. """ optstash = p4util.OptionsState( ['OPDM'], ['TDM']) # Find valid properties valid_transition = ['TRANSITION_DIPOLE', 'TRANSITION_QUADRUPOLE'] ci_prop = [] ci_trans = [] properties = kwargs.pop('properties') for prop in properties: if prop.upper() in valid_transition: ci_trans.append(prop) else: ci_prop.append(prop) proc_util.oeprop_validator(ci_prop) core.set_global_option('OPDM', 'TRUE') if len(ci_trans): core.set_global_option('TDM', 'TRUE') # Compute if name in ['mcscf', 'rasscf', 'casscf']: ciwfn = run_detcas(name, **kwargs) else: ciwfn = run_detci(name, **kwargs) # All property names are just CI if 'CI' in name.upper(): name = 'CI' states = core.get_global_option('avg_states') nroots = core.get_global_option('num_roots') if len(states) != nroots: states = range(nroots) # Run OEProp oe = core.OEProp(ciwfn) oe.set_title(name.upper()) for prop in ci_prop: oe.add(prop.upper()) # Compute "the" CI density oe.compute() ciwfn.oeprop = oe # If we have more than one root, compute all data if nroots > 1: core.print_out("\n ===> %s properties for all CI roots <=== \n\n" % name.upper()) for root in states: oe.set_title("%s ROOT %d" % (name.upper(), root)) if ciwfn.same_a_b_dens(): oe.set_Da_mo(ciwfn.get_opdm(root, root, "A", True)) else: oe.set_Da_mo(ciwfn.get_opdm(root, root, "A", True)) oe.set_Db_mo(ciwfn.get_opdm(root, root, "B", True)) oe.compute() # Transition density matrices if (nroots > 1) and len(ci_trans): oe.clear() for tprop in ci_trans: oe.add(tprop.upper()) core.print_out("\n ===> %s properties for all CI transition density matrices <=== \n\n" % name.upper()) for root in states[1:]: oe.set_title("%s ROOT %d -> ROOT %d" % (name.upper(), 0, root)) if ciwfn.same_a_b_dens(): oe.set_Da_mo(ciwfn.get_opdm(0, root, "A", True)) else: oe.set_Da_mo(ciwfn.get_opdm(0, root, "A", True)) oe.set_Db_mo(ciwfn.get_opdm(0, root, "B", True)) oe.compute() _clean_detci() optstash.restore() return ciwfn def run_eom_cc(name, **kwargs): """Function encoding sequence of PSI module calls for an EOM-CC calculation, namely EOM-CC2, EOM-CCSD, and EOM-CC3. """ optstash = p4util.OptionsState( ['TRANSQT2', 'WFN'], ['CCSORT', 'WFN'], ['CCENERGY', 'WFN'], ['CCHBAR', 'WFN'], ['CCEOM', 'WFN']) if name == 'eom-ccsd': core.set_local_option('TRANSQT2', 'WFN', 'EOM_CCSD') core.set_local_option('CCSORT', 'WFN', 'EOM_CCSD') core.set_local_option('CCENERGY', 'WFN', 'EOM_CCSD') core.set_local_option('CCHBAR', 'WFN', 'EOM_CCSD') core.set_local_option('CCEOM', 'WFN', 'EOM_CCSD') ref_wfn = run_ccenergy('ccsd', **kwargs) elif name == 'eom-cc2': user_ref = core.get_option('CCENERGY', 'REFERENCE') if (user_ref != 'RHF') and (user_ref != 'UHF'): raise ValidationError('Reference %s for EOM-CC2 is not available.' % user_ref) core.set_local_option('TRANSQT2', 'WFN', 'EOM_CC2') core.set_local_option('CCSORT', 'WFN', 'EOM_CC2') core.set_local_option('CCENERGY', 'WFN', 'EOM_CC2') core.set_local_option('CCHBAR', 'WFN', 'EOM_CC2') core.set_local_option('CCEOM', 'WFN', 'EOM_CC2') ref_wfn = run_ccenergy('cc2', **kwargs) elif name == 'eom-cc3': core.set_local_option('TRANSQT2', 'WFN', 'EOM_CC3') core.set_local_option('CCSORT', 'WFN', 'EOM_CC3') core.set_local_option('CCENERGY', 'WFN', 'EOM_CC3') core.set_local_option('CCHBAR', 'WFN', 'EOM_CC3') core.set_local_option('CCEOM', 'WFN', 'EOM_CC3') ref_wfn = run_ccenergy('cc3', **kwargs) core.cchbar(ref_wfn) core.cceom(ref_wfn) optstash.restore() return ref_wfn # TODO ask if all these cc modules not actually changing wfn def run_eom_cc_gradient(name, **kwargs): """Function encoding sequence of PSI module calls for an EOM-CCSD gradient calculation. """ optstash = p4util.OptionsState( ['CCDENSITY', 'XI'], ['CCDENSITY', 'ZETA'], ['CCLAMBDA', 'ZETA'], ['DERTYPE'], ['CCDENSITY', 'WFN'], ['CCLAMBDA', 'WFN']) core.set_global_option('DERTYPE', 'FIRST') if name == 'eom-ccsd': core.set_local_option('CCLAMBDA', 'WFN', 'EOM_CCSD') core.set_local_option('CCDENSITY', 'WFN', 'EOM_CCSD') ref_wfn = run_eom_cc(name, **kwargs) else: core.print_out('DGAS: proc.py:1599 hitting an undefined sequence') core.clean() raise ValueError('Hit a wall in proc.py:1599') core.set_local_option('CCLAMBDA', 'ZETA', 'FALSE') core.set_local_option('CCDENSITY', 'ZETA', 'FALSE') core.set_local_option('CCDENSITY', 'XI', 'TRUE') core.cclambda(ref_wfn) core.ccdensity(ref_wfn) core.set_local_option('CCLAMBDA', 'ZETA', 'TRUE') core.set_local_option('CCDENSITY', 'ZETA', 'TRUE') core.set_local_option('CCDENSITY', 'XI', 'FALSE') core.cclambda(ref_wfn) core.ccdensity(ref_wfn) derivobj = core.Deriv(ref_wfn) grad = derivobj.compute() ref_wfn.set_gradient(grad) optstash.restore() return ref_wfn def run_adcc(name, **kwargs): """Prepare and run an ADC calculation in adcc, interpret the result and return as a wavefunction. """ # TODO Maybe it would improve readability if this function was spilt # up and the whole thing went to a separate file (like for sapt, # interface_cfour.py, ... try: import adcc from adcc.exceptions import InvalidReference except ModuleNotFoundError: raise ValidationError("adcc extras qc_module not available. Try installing " "via 'pip install adcc' or 'conda install -c conda-forge adcc'.") min_version = "0.15.16" if parse_version(adcc.__version__) < parse_version(min_version): raise ModuleNotFoundError("adcc version {} is required at least. " "Version {}" " was found.".format(min_version, adcc.__version__)) if core.get_option('ADC', 'REFERENCE') not in ["RHF", "UHF"]: raise ValidationError('adcc requires reference RHF or UHF') # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.pop('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, use_c1=True, **kwargs) # Start timer do_timer = kwargs.pop("do_timer", True) if do_timer: core.tstart() # # Build kwargs for adcc # kwargs.pop("molecule", None) if ref_wfn.frzcpi()[0] > 0: kwargs["frozen_core"] = ref_wfn.frzcpi()[0] if ref_wfn.frzvpi()[0] > 0: kwargs["frozen_virtual"] = ref_wfn.frzvpi()[0] if core.get_option("ADC", "NUM_CORE_ORBITALS"): kwargs["core_orbitals"] = core.get_option("ADC", "NUM_CORE_ORBITALS") scf_accuracy = max(core.get_option("SCF", "E_CONVERGENCE"), core.get_option("SCF", "D_CONVERGENCE")) if core.get_option("ADC", "R_CONVERGENCE") < 0: kwargs["conv_tol"] = max(100 * scf_accuracy, 1e-6) else: kwargs["conv_tol"] = core.get_option("ADC", "R_CONVERGENCE") n_roots = core.get_option('ADC', 'ROOTS_PER_IRREP') if len(n_roots) > 1: raise ValidationError("adcc can only deal with a single irrep.") kwargs["n_states"] = n_roots[0] if core.get_option("ADC", "NUM_GUESSES") > 0: kwargs["n_guesses"] = core.get_option("ADC", "NUM_GUESSES") if core.get_option("ADC", "MAX_NUM_VECS") > 0: kwargs["max_subspace"] = core.get_option("ADC", "MAX_NUM_VECS") kind = core.get_option("ADC", "KIND").lower() if isinstance(ref_wfn, core.UHF): if not core.has_option_changed("ADC", "KIND"): kind = "any" elif kind not in ["any", "spin_flip"]: raise ValidationError("For UHF references the only valid values for 'KIND' are " "'SPIN_FLIP' or 'ANY' and not '{}.".format(kind.upper())) elif kind not in ["singlet", "triplet", "any"]: raise ValidationError("For RHF references the value '{}' for 'KIND' is " "not supported.".format(kind.upper())) kwargs["kind"] = kind kwargs["max_iter"] = core.get_option("ADC", "MAXITER") # # Determine ADC function method from adcc to run ADC # adcrunner = { "cvs-adc(1)": adcc.cvs_adc1, "cvs-adc(2)": adcc.cvs_adc2, "cvs-adc(2)-x": adcc.cvs_adc2x, "cvs-adc(3)": adcc.cvs_adc3, "adc(1)": adcc.adc1, "adc(2)": adcc.adc2, "adc(2)-x": adcc.adc2x, "adc(3)": adcc.adc3, } if name not in adcrunner: raise ValidationError(f"Unsupported ADC method: {name}") if "cvs" in name and "core_orbitals" not in kwargs: raise ValidationError("If a CVS-ADC method is requested, the NUM_CORE_ORBITALS option " "needs to be set.") if "core_orbitals" in kwargs and "cvs" not in name: raise ValidationError("The NUM_CORE_ORBITALS option needs to be set to '0' or absent " "unless a CVS ADC method is requested.") if "cvs" in name and kwargs["kind"] in ["spin_flip"]: raise ValidationError("Spin-flip for CVS-ADC variants is not available.") # # Launch the rocket # # Copy thread setup from psi4 adcc.set_n_threads(core.get_num_threads()) # Hack to direct the stream-like interface adcc expects to the string interface of Psi4 core class CoreStream: def write(self, text): core.print_out(text) core.print_out("\n" + adcc.banner(colour=False) + "\n") try: state = adcrunner[name](ref_wfn, **kwargs, output=CoreStream()) except InvalidReference as ex: raise ValidationError("Cannot run adcc because the passed reference wavefunction is " "not supported in adcc. Check Psi4 SCF parameters. adcc reports: " f"{ex}") except Exception as ex: raise ValidationError("Unknown exception occured while " f"running adcc: '{ex}' ({type(ex).__name__})") core.print_out("\n") # TODO Should a non-converged calculation throw? # # Interpret results # # Note: This wavefunction is not consistent ... the density # is e.g. not the proper one (i.e. not the MP(n) one) adc_wfn = core.Wavefunction(ref_wfn.molecule(), ref_wfn.basisset()) adc_wfn.shallow_copy(ref_wfn) adc_wfn.set_reference_wavefunction(ref_wfn) adc_wfn.set_name(name) adc_wfn.set_module("adcc") # MP(3) energy for CVS-ADC(3) calculations is still a missing feature in adcc # ... we store this variant here to be able to fall back to MP(2) energies. is_cvs_adc3 = state.method.level >= 3 and state.ground_state.has_core_occupied_space # Ground-state energies mp = state.ground_state mp_energy = mp.energy(state.method.level if not is_cvs_adc3 else 2) mp_corr = 0.0 if state.method.level > 1: core.print_out("Ground state energy breakdown:\n") core.print_out(" Energy SCF {0:15.8g} [Eh]\n".format(ref_wfn.energy())) for level in range(2, state.method.level + 1): if level >= 3 and is_cvs_adc3: continue energy = mp.energy_correction(level) mp_corr += energy adc_wfn.set_variable(f"MP{level} CORRELATION ENERGY", energy) adc_wfn.set_variable(f"MP{level} TOTAL ENERGY", mp.energy(level)) core.print_out(f" Energy correlation MP{level} {energy:15.8g} [Eh]\n") core.print_out(" Energy total {0:15.8g} [Eh]\n".format(mp_energy)) adc_wfn.set_variable("CURRENT CORRELATION ENERGY", mp_corr) # P::e ADC adc_wfn.set_variable("CURRENT ENERGY", mp_energy) # P::e ADC # Set results of excited-states computation # TODO Does not work: Can't use strings # adc_wfn.set_variable("excitation kind", state.kind) adc_wfn.set_variable("number of excited states", len(state.excitation_energy)) adc_wfn.set_variable("ADC ITERATIONS", state.n_iter) # P::e ADC methods = [name.upper(), 'ADC'] for excitation in state.excitations: root_index = excitation.index + 1 for method in methods: adc_wfn.set_variable(f"{method} ROOT 0 (A) -> ROOT {root_index} (A) EXCITATION ENERGY", excitation.excitation_energy) adc_wfn.set_variable(f"{method} ROOT 0 (IN A) -> ROOT {root_index} (IN A) EXCITATION ENERGY", excitation.excitation_energy) adc_wfn.set_variable(f"{method} ROOT 0 -> ROOT {root_index} EXCITATION ENERGY", excitation.excitation_energy) adc_wfn.set_variable(f"{method} ROOT 0 -> ROOT {root_index} EXCITATION ENERGY - A TRANSITION", excitation.excitation_energy) core.print_out("\n\n ==> Excited states summary <== \n") core.print_out("\n" + state.describe(oscillator_strengths=False) + "\n") # TODO Setting the excitation amplitude elements inside the wavefunction is a little # challenging, since for each excitation vector one needs to extract the elements # and map the indices from the adcc to the Psi4 convention. For this reason it # is not yet done. core.print_out("\n ==> Dominant amplitudes per state <== \n\n") tol_ampl = core.get_option("ADC", "CUTOFF_AMPS_PRINT") core.print_out(state.describe_amplitudes(tolerance=tol_ampl) + "\n\n") # Shove variables into global space for k, v in adc_wfn.variables().items(): core.set_variable(k, v) if do_timer: core.tstop() adc_wfn.adcc_state = state return adc_wfn def run_adcc_property(name, **kwargs): """Run a ADC excited-states property calculation in adcc and return the resulting properties. """ # TODO Things available in ADCC, but not yet implemented here: # Export of difference and transition density matrices for all states properties = [prop.upper() for prop in kwargs.pop('properties')] valid_properties = ['DIPOLE', 'OSCILLATOR_STRENGTH', 'TRANSITION_DIPOLE', 'ROTATIONAL_STRENGTH'] unknown_properties = [prop for prop in properties if prop not in valid_properties] if unknown_properties: alternatives = "" alt_method_name = p4util.text.find_approximate_string_matches(unknown_properties[0], valid_properties, 2) if alt_method_name: alternatives = " Did you mean? " + " ".join(alt_method_name) raise ValidationError("ADC property: Feature '{}' is not recognized. {}" "".format(unknown_properties[0], alternatives)) # Start timer do_timer = kwargs.pop("do_timer", True) if do_timer: core.tstart() adc_wfn = run_adcc(name, do_timer=False, **kwargs) state = adc_wfn.adcc_state hf = state.reference_state mp = state.ground_state # Formats and indention ind = " " def format_vector(label, data): assert data.ndim == 1 return f"{label:<40s} " + " ".join(f"{d:12.6g}" for d in data) if "DIPOLE" in properties: lines = ["\nGround state properties"] lines += [ind + "Hartree-Fock (HF)"] lines += [ind + ind + format_vector("Dipole moment (in a.u.)", hf.dipole_moment)] if state.method.level > 1: lines += [ind + "Møller Plesset 2nd order (MP2)"] lines += [ind + ind + format_vector("Dipole moment (in a.u.)", mp.dipole_moment(2))] with warnings.catch_warnings(): warnings.simplefilter("ignore") for i, cart in enumerate(["X", "Y", "Z"]): # retire components at v1.5 adc_wfn.set_variable("MP2 dipole " + cart, mp.dipole_moment(2)[i]) adc_wfn.set_variable("current dipole " + cart, mp.dipole_moment(2)[i]) adc_wfn.set_variable("MP2 dipole", mp.dipole_moment(2)) adc_wfn.set_variable("current dipole", mp.dipole_moment(2)) lines += [""] core.print_out("\n".join(lines) + "\n") gauge = core.get_option("ADC", "GAUGE").lower() if gauge == "velocity": gauge_short = "VEL" elif gauge == "length": gauge_short = "LEN" else: raise ValidationError(f"Gauge {gauge} not recognised for ADC calculations.") computed = [] methods = [name.upper(), 'ADC'] for excitation in state.excitations: root_index = excitation.index + 1 props = {} if any(prop in properties for prop in ("TRANSITION_DIPOLE", "OSCILLATOR_STRENGTH")): data = excitation.transition_dipole_moment props["Transition dipole moment (in a.u.)"] = data data_mat = data.reshape(1, 3) for method in methods: adc_wfn.set_variable(f"{method} ROOT 0 (A) -> ROOT {root_index} (A) " "ELECTRIC TRANSITION DIPOLE MOMENT (LEN)", data_mat) adc_wfn.set_variable(f"{method} ROOT 0 (IN A) -> ROOT {root_index} (IN A) " "ELECTRIC TRANSITION DIPOLE MOMENT (LEN)", data_mat) adc_wfn.set_variable(f"{method} ROOT 0 -> ROOT {root_index} " "ELECTRIC TRANSITION DIPOLE MOMENT (LEN)", data_mat) adc_wfn.set_variable(f"{method} ROOT 0 -> ROOT {root_index} " "ELECTRIC TRANSITION DIPOLE MOMENT (LEN) - A TRANSITION", data_mat) if "OSCILLATOR_STRENGTH" in properties: if gauge == "velocity": data = excitation.oscillator_strength_velocity else: data = excitation.oscillator_strength props[f"Oscillator strength ({gauge} gauge)"] = data.reshape(-1) for method in methods: adc_wfn.set_variable(f"{method} ROOT 0 (A) -> ROOT {root_index} (A) " f"OSCILLATOR STRENGTH ({gauge_short})", data) adc_wfn.set_variable(f"{method} ROOT 0 (IN A) -> ROOT {root_index} (IN A) " f"OSCILLATOR STRENGTH ({gauge_short})", data) adc_wfn.set_variable(f"{method} ROOT 0 -> ROOT {root_index} " f"OSCILLATOR STRENGTH ({gauge_short})", data) adc_wfn.set_variable(f"{method} ROOT 0 -> ROOT {root_index} " f"OSCILLATOR STRENGTH ({gauge_short}) - A TRANSITION", data) if "ROTATIONAL_STRENGTH" in properties: data = excitation.rotatory_strength props["Rotational strength (velocity gauge)"] = data.reshape(-1) for method in methods: adc_wfn.set_variable(f"{method} ROOT 0 (A) -> ROOT {root_index} (A) " "ROTATORY STRENGTH (VEL)", data) adc_wfn.set_variable(f"{method} ROOT 0 (IN A) -> ROOT {root_index} (IN A) " "ROTATORY STRENGTH (VEL)", data) adc_wfn.set_variable(f"{method} ROOT 0 -> ROOT {root_index} " "ROTATORY STRENGTH (VEL)", data) adc_wfn.set_variable(f"{method} ROOT 0 -> ROOT {root_index} " "ROTATORY STRENGTH (VEL) - A TRANSITION", data) if "DIPOLE" in properties: data = excitation.state_dipole_moment props["State dipole moment (in a.u.)"] = data data_mat = data.reshape(1, 3) for method in methods: adc_wfn.set_variable(f"{method} ROOT {root_index} DIPOLE MOMENT", data_mat) adc_wfn.set_variable(f"{method} ROOT {root_index} DIPOLE MOMENT - A TRANSITION", data_mat) adc_wfn.set_variable(f"{method} ROOT {root_index} (A) DIPOLE MOMENT", data_mat) adc_wfn.set_variable(f"{method} ROOT {root_index} (IN A) DIPOLE MOMENT", data_mat) computed.append(props) # for Psivar scraper # wfn.set_variable("ADC ROOT 0 -> ROOT n EXCITATION ENERGY") # P::e ADC # wfn.set_variable("ADC ROOT 0 (IN h) -> ROOT n (IN i) EXCITATION ENERGY") # P::e ADC # wfn.set_variable("ADC ROOT 0 (h) -> ROOT n (i) EXCITATION ENERGY") # P::e ADC # wfn.set_variable("ADC ROOT 0 -> ROOT n EXCITATION ENERGY - h TRANSITION") # P::e ADC # wfn.set_array_variable("ADC ROOT 0 -> ROOT n ELECTRIC TRANSITION DIPOLE MOMENT (LEN)") # P::e ADC # wfn.set_array_variable("ADC ROOT 0 (IN h) -> ROOT n (IN i) ELECTRIC TRANSITION DIPOLE MOMENT (LEN)") # P::e ADC # wfn.set_array_variable("ADC ROOT 0 (h) -> ROOT n (i) ELECTRIC TRANSITION DIPOLE MOMENT (LEN)") # P::e ADC # wfn.set_array_variable("ADC ROOT 0 -> ROOT n ELECTRIC TRANSITION DIPOLE MOMENT (LEN) - h TRANSITION") # P::e ADC # wfn.set_array_variable("ADC ROOT n DIPOLE MOMENT") # P::e ADC # wfn.set_array_variable("ADC ROOT n (IN i) DIPOLE MOMENT") # P::e ADC # wfn.set_array_variable("ADC ROOT n (i) DIPOLE MOMENT") # P::e ADC # wfn.set_array_variable("ADC ROOT n DIPOLE MOMENT - h TRANSITION") # P::e ADC # wfn.set_variable("ADC ROOT 0 -> ROOT n OSCILLATOR STRENGTH (LEN)") # P::e ADC # wfn.set_variable("ADC ROOT 0 (IN h) -> ROOT n (IN i) OSCILLATOR STRENGTH (LEN)") # P::e ADC # wfn.set_variable("ADC ROOT 0 (h) -> ROOT n (i) OSCILLATOR STRENGTH (LEN)") # P::e ADC # wfn.set_variable("ADC ROOT 0 -> ROOT n OSCILLATOR STRENGTH (LEN) - h TRANSITION") # P::e ADC # wfn.set_variable("ADC ROOT 0 -> ROOT n OSCILLATOR STRENGTH (VEL)") # P::e ADC # wfn.set_variable("ADC ROOT 0 (IN h) -> ROOT n (IN i) OSCILLATOR STRENGTH (VEL)") # P::e ADC # wfn.set_variable("ADC ROOT 0 (h) -> ROOT n (i) OSCILLATOR STRENGTH (VEL)") # P::e ADC # wfn.set_variable("ADC ROOT 0 -> ROOT n OSCILLATOR STRENGTH (VEL) - h TRANSITION") # P::e ADC # wfn.set_variable("ADC ROOT 0 -> ROOT n ROTATORY STRENGTH (VEL)") # P::e ADC # wfn.set_variable("ADC ROOT 0 (IN h) -> ROOT n (IN i) ROTATORY STRENGTH (VEL)") # P::e ADC # wfn.set_variable("ADC ROOT 0 (h) -> ROOT n (i) ROTATORY STRENGTH (VEL)") # P::e ADC # wfn.set_variable("ADC ROOT 0 -> ROOT n ROTATORY STRENGTH (VEL) - h TRANSITION") # P::e ADC core.print_out("\nExcited state properties:\n") for i, props in enumerate(computed): lines = [ind + f"Excited state {i}"] for prop, data in sorted(props.items()): lines += [ind + ind + format_vector(prop, data)] core.print_out("\n".join(lines) + "\n") # Shove variables into global space for k, v in adc_wfn.variables().items(): core.set_variable(k, v) if do_timer: core.tstop() return adc_wfn def run_detci(name, **kwargs): """Function encoding sequence of PSI module calls for a configuration interaction calculation, namely FCI, CIn, MPn, and ZAPTn. """ # dtl = docs_table_link("dummy", "detci") optstash = p4util.OptionsState( ['DETCI', 'WFN'], ['DETCI', 'MAX_NUM_VECS'], ['DETCI', 'MPN_ORDER_SAVE'], ['DETCI', 'MPN'], ['DETCI', 'FCI'], ['DETCI', 'EX_LEVEL']) # throw exception for UHF if core.get_option('DETCI', 'REFERENCE') not in ['RHF', 'ROHF']: raise ValidationError('Reference %s for DETCI is not available.' % core.get_option('DETCI', 'REFERENCE')) # throw exception for DF/CD. many of these pre-trapped by select_* functions but some escape, incl. zapt if (corl_type := method_algorithm_type(name).now) != "CONV": raise ValidationError(f"Invalid type {corl_type} for DETCI energy through `run_detci`.") # See Capabilities Table") mtdlvl_mobj = re.match(r"""\A(?P<method>[a-z]+)(?P<level>\d+)\Z""", name.lower()) if mtdlvl_mobj and mtdlvl_mobj.group("method") == "zapt": level = int(mtdlvl_mobj.group("level")) # throw exception for non-ROHF if (ref := core.get_option("SCF", "REFERENCE")) != "ROHF": raise UpgradeHelper(f"energy('zapt{level}')", f"energy('mp{level}')", 1.7, " Replace method ZAPT with method MP for RHF reference. DETCI is orders-of-magnitude inefficient for perturbation theory.") core.set_local_option('DETCI', 'WFN', 'ZAPTN') maxnvect = int((level + 1) / 2) + (level + 1) % 2 core.set_local_option('DETCI', 'MAX_NUM_VECS', maxnvect) if (level + 1) % 2: core.set_local_option('DETCI', 'MPN_ORDER_SAVE', 2) else: core.set_local_option('DETCI', 'MPN_ORDER_SAVE', 1) elif mtdlvl_mobj and mtdlvl_mobj.group("method") == "mp": core.set_local_option('DETCI', 'WFN', 'DETCI') core.set_local_option('DETCI', 'MPN', 'TRUE') level = int(mtdlvl_mobj.group("level")) maxnvect = int((level + 1) / 2) + (level + 1) % 2 core.set_local_option('DETCI', 'MAX_NUM_VECS', maxnvect) if (level + 1) % 2: core.set_local_option('DETCI', 'MPN_ORDER_SAVE', 2) else: core.set_local_option('DETCI', 'MPN_ORDER_SAVE', 1) elif name == 'ccsd': # untested core.set_local_option('DETCI', 'WFN', 'DETCI') core.set_local_option('DETCI', 'CC', 'TRUE') core.set_local_option('DETCI', 'CC_EX_LEVEL', 2) elif name == 'fci': core.set_local_option('DETCI', 'WFN', 'DETCI') core.set_local_option('DETCI', 'FCI', 'TRUE') elif name == 'cisd': core.set_local_option('DETCI', 'WFN', 'DETCI') core.set_local_option('DETCI', 'EX_LEVEL', 2) elif name == 'cisdt': core.set_local_option('DETCI', 'WFN', 'DETCI') core.set_local_option('DETCI', 'EX_LEVEL', 3) elif name == 'cisdtq': core.set_local_option('DETCI', 'WFN', 'DETCI') core.set_local_option('DETCI', 'EX_LEVEL', 4) elif mtdlvl_mobj and mtdlvl_mobj.group("method") == "ci": core.set_local_option('DETCI', 'WFN', 'DETCI') level = int(mtdlvl_mobj.group("level")) core.set_local_option('DETCI', 'EX_LEVEL', level) elif name == 'detci': pass # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # C1 certified # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) ciwfn = core.detci(ref_wfn) # Shove variables into global space for k, v in ciwfn.variables().items(): core.set_variable(k, v) print_nos = False if core.get_option("DETCI", "NAT_ORBS"): ciwfn.ci_nat_orbs() print_nos = True proc_util.print_ci_results(ciwfn, name.upper(), ciwfn.variable("HF TOTAL ENERGY"), ciwfn.variable("CURRENT ENERGY"), print_nos) core.print_out("\t\t \"A good bug is a dead bug\" \n\n") core.print_out("\t\t\t - Starship Troopers\n\n") core.print_out("\t\t \"I didn't write FORTRAN. That's the problem.\"\n\n") core.print_out("\t\t\t - Edward Valeev\n") if core.get_global_option("DIPMOM") and ("mp" not in name.lower()): # We always would like to print a little dipole information oeprop = core.OEProp(ciwfn) oeprop.set_title(name.upper()) oeprop.add("DIPOLE") oeprop.compute() ciwfn.oeprop = oeprop core.set_variable("CURRENT DIPOLE", core.variable(name.upper() + " DIPOLE")) ciwfn.cleanup_ci() ciwfn.cleanup_dpd() _clean_detci() for lvl in range(4, 11): if ciwfn.has_variable(f"MP{lvl} CORRELATION ENERGY") and ciwfn.has_variable(f"MP{lvl-1} CORRELATION ENERGY"): ciwfn.set_variable(f"MP{lvl} CORRECTION ENERGY", ciwfn.variable(f"MP{lvl} CORRELATION ENERGY") - ciwfn.variable(f"MP{lvl-1} CORRELATION ENERGY")) core.set_variable(f"MP{lvl} CORRECTION ENERGY", ciwfn.variable(f"MP{lvl} CORRELATION ENERGY") - ciwfn.variable(f"MP{lvl-1} CORRELATION ENERGY")) optstash.restore() return ciwfn def run_dfmp2(name, **kwargs): """Function encoding sequence of PSI module calls for a density-fitted MP2 calculation. """ optstash = p4util.OptionsState( ['DF_BASIS_MP2'], ['SCF_TYPE']) # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') core.print_out(""" SCF Algorithm Type (re)set to DF.\n""") # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # C1 certified core.tstart() core.print_out('\n') p4util.banner('DFMP2') core.print_out('\n') if core.get_global_option('REFERENCE') == "ROHF": ref_wfn.semicanonicalize() aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_MP2", core.get_option("DFMP2", "DF_BASIS_MP2"), "RIFIT", core.get_global_option('BASIS')) ref_wfn.set_basisset("DF_BASIS_MP2", aux_basis) dfmp2_wfn = core.dfmp2(ref_wfn) dfmp2_wfn.compute_energy() if name == 'scs-mp2': dfmp2_wfn.set_variable('CURRENT ENERGY', dfmp2_wfn.variable('SCS-MP2 TOTAL ENERGY')) dfmp2_wfn.set_variable('CURRENT CORRELATION ENERGY', dfmp2_wfn.variable('SCS-MP2 CORRELATION ENERGY')) elif name == 'mp2': dfmp2_wfn.set_variable('CURRENT ENERGY', dfmp2_wfn.variable('MP2 TOTAL ENERGY')) dfmp2_wfn.set_variable('CURRENT CORRELATION ENERGY', dfmp2_wfn.variable('MP2 CORRELATION ENERGY')) # Shove variables into global space for k, v in dfmp2_wfn.variables().items(): core.set_variable(k, v) optstash.restore() core.tstop() return dfmp2_wfn def run_dfep2(name, **kwargs): """Function encoding sequence of PSI module calls for a density-fitted MP2 calculation. """ core.tstart() optstash = p4util.OptionsState( ['DF_BASIS_MP2'], ['SCF_TYPE']) # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') core.print_out(""" SCF Algorithm Type (re)set to DF.\n""") # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # C1 certified if core.get_global_option('REFERENCE') != "RHF": raise ValidationError("DF-EP2 is not available for %s references.", core.get_global_option('REFERENCE')) # Build the wavefunction aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_EP2", core.get_option("DFEP2", "DF_BASIS_EP2"), "RIFIT", core.get_global_option('BASIS')) ref_wfn.set_basisset("DF_BASIS_EP2", aux_basis) dfep2_wfn = core.DFEP2Wavefunction(ref_wfn) # Figure out what were doing if core.has_option_changed('DFEP2', 'EP2_ORBITALS'): ep2_input = core.get_global_option("EP2_ORBITALS") else: n_ip = core.get_global_option("EP2_NUM_IP") n_ea = core.get_global_option("EP2_NUM_EA") eps = np.hstack(dfep2_wfn.epsilon_a().nph) irrep_map = np.hstack([np.ones_like(dfep2_wfn.epsilon_a().nph[x]) * x for x in range(dfep2_wfn.nirrep())]) sort = np.argsort(eps) ip_map = sort[dfep2_wfn.nalpha() - n_ip:dfep2_wfn.nalpha()] ea_map = sort[dfep2_wfn.nalpha():dfep2_wfn.nalpha() + n_ea] ep2_input = [[] for x in range(dfep2_wfn.nirrep())] nalphapi = tuple(dfep2_wfn.nalphapi()) # Add IP info ip_info = np.unique(irrep_map[ip_map], return_counts=True) for irrep, cnt in zip(*ip_info): irrep = int(irrep) ep2_input[irrep].extend(range(nalphapi[irrep] - cnt, nalphapi[irrep])) # Add EA info ea_info = np.unique(irrep_map[ea_map], return_counts=True) for irrep, cnt in zip(*ea_info): irrep = int(irrep) ep2_input[irrep].extend(range(nalphapi[irrep], nalphapi[irrep] + cnt)) # Compute ret = dfep2_wfn.compute(ep2_input) # Resort it... ret_eps = [] for h in range(dfep2_wfn.nirrep()): ep2_data = ret[h] inp_data = ep2_input[h] for i in range(len(ep2_data)): tmp = [h, ep2_data[i][0], ep2_data[i][1], dfep2_wfn.epsilon_a().get(h, inp_data[i]), inp_data[i]] ret_eps.append(tmp) ret_eps.sort(key=lambda x: x[3]) h2ev = constants.hartree2ev irrep_labels = dfep2_wfn.molecule().irrep_labels() core.print_out(" ==> Results <==\n\n") core.print_out(" %8s %12s %12s %8s\n" % ("Orbital", "Koopmans (eV)", "EP2 (eV)", "EP2 PS")) core.print_out(" ----------------------------------------------\n") for irrep, ep2, ep2_ps, kt, pos in ret_eps: label = str(pos + 1) + irrep_labels[irrep] core.print_out(" %8s % 12.3f % 12.3f % 6.3f\n" % (label, (kt * h2ev), (ep2 * h2ev), ep2_ps)) core.set_variable("EP2 " + label.upper() + " ENERGY", ep2) core.print_out(" ----------------------------------------------\n\n") # Figure out the IP and EA sorted_vals = np.array([x[1] for x in ret_eps]) ip_vals = sorted_vals[sorted_vals < 0] ea_vals = sorted_vals[sorted_vals > 0] ip_value = None ea_value = None if len(ip_vals): core.set_variable("EP2 IONIZATION POTENTIAL", ip_vals[-1]) core.set_variable("CURRENT ENERGY", ip_vals[-1]) if len(ea_vals): core.set_variable("EP2 ELECTRON AFFINITY", ea_vals[0]) if core.variable("EP2 IONIZATION POTENTIAL") == 0.0: core.set_variable("CURRENT ENERGY", ea_vals[0]) core.print_out(" EP2 has completed successfully!\n\n") core.tstop() return dfep2_wfn def run_dlpnomp2(name, **kwargs): """Function encoding sequence of PSI module calls for a DLPNO-MP2 calculation. """ optstash = p4util.OptionsState( ['DF_BASIS_MP2'], ['SCF_TYPE']) # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') core.print_out(""" SCF Algorithm Type (re)set to DF.\n""") # DLPNO-MP2 is only DF if core.get_global_option('MP2_TYPE') != "DF": raise ValidationError(""" DLPNO-MP2 is only implemented with density fitting.\n""" """ 'mp2_type' must be set to 'DF'.\n""") # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified elif ref_wfn.molecule().schoenflies_symbol() != 'c1': raise ValidationError(""" DLPNO-MP2 does not make use of molecular symmetry: """ """reference wavefunction must be C1.\n""") if core.get_global_option('REFERENCE') != "RHF": raise ValidationError("DLPNO-MP2 is not available for %s references.", core.get_global_option('REFERENCE')) core.tstart() core.print_out('\n') p4util.banner('DLPNO-MP2') core.print_out('\n') aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_MP2", core.get_option("DLPNO", "DF_BASIS_MP2"), "RIFIT", core.get_global_option('BASIS')) ref_wfn.set_basisset("DF_BASIS_MP2", aux_basis) dlpnomp2_wfn = core.dlpno(ref_wfn) dlpnomp2_wfn.compute_energy() if name == 'scs-dlpno-mp2': dlpnomp2_wfn.set_variable('CURRENT ENERGY', dlpnomp2_wfn.variable('SCS-MP2 TOTAL ENERGY')) dlpnomp2_wfn.set_variable('CURRENT CORRELATION ENERGY', dlpnomp2_wfn.variable('SCS-MP2 CORRELATION ENERGY')) elif name == 'dlpno-mp2': dlpnomp2_wfn.set_variable('CURRENT ENERGY', dlpnomp2_wfn.variable('MP2 TOTAL ENERGY')) dlpnomp2_wfn.set_variable('CURRENT CORRELATION ENERGY', dlpnomp2_wfn.variable('MP2 CORRELATION ENERGY')) # Shove variables into global space for k, v in dlpnomp2_wfn.variables().items(): core.set_variable(k, v) optstash.restore() core.tstop() return dlpnomp2_wfn def run_dmrgscf(name, **kwargs): """Function encoding sequence of PSI module calls for an DMRG calculation. """ optstash = p4util.OptionsState( ['SCF_TYPE'], ['DMRG', 'DMRG_CASPT2_CALC']) # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) if 'CASPT2' in name.upper(): core.set_local_option("DMRG", "DMRG_CASPT2_CALC", True) dmrg_wfn = core.dmrg(ref_wfn) optstash.restore() # Shove variables into global space for k, v in dmrg_wfn.variables().items(): core.set_variable(k, v) return dmrg_wfn def run_dmrgci(name, **kwargs): """Function encoding sequence of PSI module calls for an DMRG calculation. """ optstash = p4util.OptionsState( ['SCF_TYPE'], ['DMRG', 'DMRG_SCF_MAX_ITER']) # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) core.set_local_option('DMRG', 'DMRG_SCF_MAX_ITER', 1) dmrg_wfn = core.dmrg(ref_wfn) optstash.restore() # Shove variables into global space for k, v in dmrg_wfn.variables().items(): core.set_variable(k, v) return dmrg_wfn def run_psimrcc(name, **kwargs): """Function encoding sequence of PSI module calls for a PSIMRCC computation using a reference from the MCSCF module """ mcscf_wfn = run_mcscf(name, **kwargs) psimrcc_wfn = core.psimrcc(mcscf_wfn) # Shove variables into global space for k, v in psimrcc_wfn.variables().items(): core.set_variable(k, v) return psimrcc_wfn def run_psimrcc_scf(name, **kwargs): """Function encoding sequence of PSI module calls for a PSIMRCC computation using a reference from the SCF module """ # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) psimrcc_wfn = core.psimrcc(ref_wfn) # Shove variables into global space for k, v in psimrcc_wfn.variables().items(): core.set_variable(k, v) return psimrcc_wfn def run_sapt(name, **kwargs): """Function encoding sequence of PSI module calls for a SAPT calculation of any level. """ optstash = p4util.OptionsState(['SCF_TYPE']) # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') # Get the molecule of interest ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: sapt_dimer = kwargs.pop('molecule', core.get_active_molecule()) else: core.print_out('Warning! SAPT argument "ref_wfn" is only able to use molecule information.') sapt_dimer = ref_wfn.molecule() sapt_basis = kwargs.pop('sapt_basis', 'dimer') sapt_dimer, monomerA, monomerB = proc_util.prepare_sapt_molecule(sapt_dimer, sapt_basis) # Need to ensure consistent orbital freezing # between monomer and dimer computations monomerA_basis = core.BasisSet.build(monomerA, "BASIS", core.get_global_option("BASIS")) monomerB_basis = core.BasisSet.build(monomerB, "BASIS", core.get_global_option("BASIS")) nfc_ab = monomerA_basis.n_frozen_core() + monomerB_basis.n_frozen_core() if (core.get_option('SCF', 'REFERENCE') != 'RHF') and (name.upper() != "SAPT0"): raise ValidationError('Only SAPT0 supports a reference different from \"reference rhf\".') do_delta_mp2 = True if name.endswith('dmp2') else False do_empirical_disp = True if '-d' in name.lower() else False if do_empirical_disp: ## Make sure we are turning SAPT0 dispersion off core.set_local_option('SAPT', 'SAPT0_E10', True) core.set_local_option('SAPT', 'SAPT0_E20IND', True) core.set_local_option('SAPT', 'SAPT0_E20Disp', False) ri = core.get_global_option('SCF_TYPE') df_ints_io = core.get_option('SCF', 'DF_INTS_IO') # inquire if above at all applies to dfmp2 core.IO.set_default_namespace('dimer') core.print_out('\n') p4util.banner('Dimer HF') core.print_out('\n') # Compute dimer wavefunction if (sapt_basis == 'dimer') and (ri == 'DF'): core.set_global_option('DF_INTS_IO', 'SAVE') optstash2 = p4util.OptionsState(['NUM_FROZEN_DOCC']) core.set_global_option("NUM_FROZEN_DOCC", nfc_ab) core.timer_on("SAPT: Dimer SCF") dimer_wfn = scf_helper('RHF', molecule=sapt_dimer, **kwargs) core.timer_off("SAPT: Dimer SCF") necp_ab = dimer_wfn.basisset().n_ecp_core() share_df_ints = ((sapt_basis == 'dimer') and (ri == 'DF') and not (necp_ab and (os.name == 'nt'))) if (sapt_basis == 'dimer') and (ri == 'DF') and not share_df_ints: core.print_out(f"\n Turning off SAPT DF integrals sharing because of ECP: {necp_ab}\n\n") if do_delta_mp2: select_mp2("mp2", ref_wfn=dimer_wfn, **kwargs) mp2_corl_interaction_e = core.variable('MP2 CORRELATION ENERGY') optstash2.restore() if share_df_ints: core.set_global_option('DF_INTS_IO', 'LOAD') # Compute Monomer A wavefunction if share_df_ints: core.IO.change_file_namespace(97, 'dimer', 'monomerA') core.IO.set_default_namespace('monomerA') core.print_out('\n') p4util.banner('Monomer A HF') core.print_out('\n') core.timer_on("SAPT: Monomer A SCF") monomerA_wfn = scf_helper('RHF', molecule=monomerA, **kwargs) core.timer_off("SAPT: Monomer A SCF") if do_delta_mp2: select_mp2("mp2", ref_wfn=monomerA_wfn, **kwargs) mp2_corl_interaction_e -= core.variable('MP2 CORRELATION ENERGY') # Compute Monomer B wavefunction if share_df_ints: core.IO.change_file_namespace(97, 'monomerA', 'monomerB') core.IO.set_default_namespace('monomerB') core.print_out('\n') p4util.banner('Monomer B HF') core.print_out('\n') core.timer_on("SAPT: Monomer B SCF") monomerB_wfn = scf_helper('RHF', molecule=monomerB, **kwargs) core.timer_off("SAPT: Monomer B SCF") # Delta MP2 if do_delta_mp2: select_mp2("mp2", ref_wfn=monomerB_wfn, **kwargs) mp2_corl_interaction_e -= core.variable('MP2 CORRELATION ENERGY') core.set_variable("SAPT MP2 CORRELATION ENERGY", mp2_corl_interaction_e) # P::e SAPT core.set_global_option('DF_INTS_IO', df_ints_io) if core.get_option('SCF', 'REFERENCE') == 'RHF': core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERA, 'monomerA', 'dimer') core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERB, 'monomerB', 'dimer') core.IO.set_default_namespace('dimer') # core.set_local_option('SAPT', 'CPHF_R_CONVERGENCE', 10e-10) if name in ['sapt0', 'ssapt0']: core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT0') elif name == 'sapt2': core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2') elif name in ['sapt2+', 'sapt2+dmp2']: core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+') core.set_local_option('SAPT', 'DO_CCD_DISP', False) elif name in ['sapt2+(3)', 'sapt2+(3)dmp2']: core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3') core.set_local_option('SAPT', 'DO_THIRD_ORDER', False) core.set_local_option('SAPT', 'DO_CCD_DISP', False) elif name in ['sapt2+3', 'sapt2+3dmp2']: core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3') core.set_local_option('SAPT', 'DO_THIRD_ORDER', True) core.set_local_option('SAPT', 'DO_CCD_DISP', False) elif name in ['sapt2+(ccd)', 'sapt2+(ccd)dmp2']: core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+') core.set_local_option('SAPT', 'DO_CCD_DISP', True) elif name in ['sapt2+(3)(ccd)', 'sapt2+(3)(ccd)dmp2']: core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3') core.set_local_option('SAPT', 'DO_THIRD_ORDER', False) core.set_local_option('SAPT', 'DO_CCD_DISP', True) elif name in ['sapt2+3(ccd)', 'sapt2+3(ccd)dmp2']: core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3') core.set_local_option('SAPT', 'DO_THIRD_ORDER', True) core.set_local_option('SAPT', 'DO_CCD_DISP', True) # Make sure we are not going to run CPHF on ROHF, since its MO Hessian # is not SPD if core.get_option('SCF', 'REFERENCE') == 'ROHF': core.set_local_option('SAPT', 'COUPLED_INDUCTION', False) core.print_out(' Coupled induction not available for ROHF.\n') core.print_out(' Proceeding with uncoupled induction only.\n') core.print_out(" Constructing Basis Sets for SAPT...\n\n") aux_basis = core.BasisSet.build(dimer_wfn.molecule(), "DF_BASIS_SAPT", core.get_global_option("DF_BASIS_SAPT"), "RIFIT", core.get_global_option("BASIS")) dimer_wfn.set_basisset("DF_BASIS_SAPT", aux_basis) aux_basis = core.BasisSet.build(dimer_wfn.molecule(), "DF_BASIS_ELST", core.get_global_option("DF_BASIS_ELST"), "JKFIT", core.get_global_option("BASIS")) dimer_wfn.set_basisset("DF_BASIS_ELST", aux_basis) core.print_out('\n') p4util.banner(name.upper()) core.print_out('\n') e_sapt = core.sapt(dimer_wfn, monomerA_wfn, monomerB_wfn) dimer_wfn.set_module("sapt") from psi4.driver.qcdb.psivardefs import sapt_psivars p4util.expand_psivars(sapt_psivars()) optstash.restore() # Get the SAPT name right if doing empirical dispersion if do_empirical_disp: sapt_name = "sapt0" else: sapt_name = name # Make sure we got induction, otherwise replace it with uncoupled induction which_ind = 'IND' target_ind = 'IND' if not core.has_variable(' '.join((sapt_name.upper(), which_ind, 'ENERGY'))): which_ind = 'IND,U' for term in ['ELST', 'EXCH', 'DISP', 'TOTAL']: core.set_variable(' '.join(['SAPT', term, 'ENERGY']), core.variable(' '.join([sapt_name.upper(), term, 'ENERGY']))) # Special induction case core.set_variable(' '.join(['SAPT', target_ind, 'ENERGY']), core.variable(' '.join([sapt_name.upper(), which_ind, 'ENERGY']))) core.set_variable('CURRENT ENERGY', core.variable('SAPT TOTAL ENERGY')) # Empirical dispersion if do_empirical_disp: proc_util.sapt_empirical_dispersion(name, dimer_wfn) return dimer_wfn def run_sapt_ct(name, **kwargs): """Function encoding sequence of PSI module calls for a charge-transfer SAPT calcuation of any level. """ optstash = p4util.OptionsState( ['SCF_TYPE']) if 'ref_wfn' in kwargs: core.print_out('\nWarning! Argument ref_wfn is not valid for sapt computations\n') # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') # Get the molecule of interest ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: sapt_dimer = kwargs.pop('molecule', core.get_active_molecule()) else: core.print_out('Warning! SAPT argument "ref_wfn" is only able to use molecule information.') sapt_dimer = ref_wfn.molecule() sapt_dimer, monomerA, monomerB = proc_util.prepare_sapt_molecule(sapt_dimer, "dimer") monomerAm = sapt_dimer.extract_subsets(1) monomerAm.set_name('monomerAm') monomerBm = sapt_dimer.extract_subsets(2) monomerBm.set_name('monomerBm') if core.get_option('SCF', 'REFERENCE') != 'RHF': raise ValidationError('SAPT requires requires \"reference rhf\".') ri = core.get_global_option('SCF_TYPE') df_ints_io = core.get_option('SCF', 'DF_INTS_IO') # inquire if above at all applies to dfmp2 core.IO.set_default_namespace('dimer') core.print_out('\n') p4util.banner('Dimer HF') core.print_out('\n') core.set_global_option('DF_INTS_IO', 'SAVE') dimer_wfn = scf_helper('RHF', molecule=sapt_dimer, **kwargs) core.set_global_option('DF_INTS_IO', 'LOAD') if (ri == 'DF'): core.IO.change_file_namespace(97, 'dimer', 'monomerA') core.IO.set_default_namespace('monomerA') core.print_out('\n') p4util.banner('Monomer A HF (Dimer Basis)') core.print_out('\n') monomerA_wfn = scf_helper('RHF', molecule=monomerA, **kwargs) if (ri == 'DF'): core.IO.change_file_namespace(97, 'monomerA', 'monomerB') core.IO.set_default_namespace('monomerB') core.print_out('\n') p4util.banner('Monomer B HF (Dimer Basis)') core.print_out('\n') monomerB_wfn = scf_helper('RHF', molecule=monomerB, **kwargs) core.set_global_option('DF_INTS_IO', df_ints_io) core.IO.set_default_namespace('monomerAm') core.print_out('\n') p4util.banner('Monomer A HF (Monomer Basis)') core.print_out('\n') monomerAm_wfn = scf_helper('RHF', molecule=monomerAm, **kwargs) core.IO.set_default_namespace('monomerBm') core.print_out('\n') p4util.banner('Monomer B HF (Monomer Basis)') core.print_out('\n') monomerBm_wfn = scf_helper('RHF', molecule=monomerBm, **kwargs) core.IO.set_default_namespace('dimer') # core.set_local_option('SAPT', 'CPHF_R_CONVERGENCE', 10e-10) if name == 'sapt0-ct': core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT0') elif name == 'sapt2-ct': core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2') elif name == 'sapt2+-ct': core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+') elif name == 'sapt2+(3)-ct': core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3') core.set_local_option('SAPT', 'DO_THIRD_ORDER', False) elif name == 'sapt2+3-ct': core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3') core.set_local_option('SAPT', 'DO_THIRD_ORDER', True) elif name == 'sapt2+(ccd)-ct': core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+') core.set_local_option('SAPT', 'DO_CCD_DISP', True) elif name == 'sapt2+(3)(ccd)-ct': core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3') core.set_local_option('SAPT', 'DO_THIRD_ORDER', False) core.set_local_option('SAPT', 'DO_CCD_DISP', True) elif name == 'sapt2+3(ccd)-ct': core.set_local_option('SAPT', 'SAPT_LEVEL', 'SAPT2+3') core.set_local_option('SAPT', 'DO_THIRD_ORDER', True) core.set_local_option('SAPT', 'DO_CCD_DISP', True) core.print_out('\n') aux_basis = core.BasisSet.build(dimer_wfn.molecule(), "DF_BASIS_SAPT", core.get_global_option("DF_BASIS_SAPT"), "RIFIT", core.get_global_option("BASIS")) dimer_wfn.set_basisset("DF_BASIS_SAPT", aux_basis) if core.get_global_option("DF_BASIS_ELST") == "": dimer_wfn.set_basisset("DF_BASIS_ELST", aux_basis) else: aux_basis = core.BasisSet.build(dimer_wfn.molecule(), "DF_BASIS_ELST", core.get_global_option("DF_BASIS_ELST"), "RIFIT", core.get_global_option("BASIS")) dimer_wfn.set_basisset("DF_BASIS_ELST", aux_basis) core.print_out('\n') p4util.banner('SAPT Charge Transfer') core.print_out('\n') core.print_out('\n') p4util.banner('Dimer Basis SAPT') core.print_out('\n') core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERA, 'monomerA', 'dimer') core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERB, 'monomerB', 'dimer') e_sapt = core.sapt(dimer_wfn, monomerA_wfn, monomerB_wfn) CTd = core.variable('SAPT CT ENERGY') dimer_wfn.set_module("sapt") core.print_out('\n') p4util.banner('Monomer Basis SAPT') core.print_out('\n') core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERA, 'monomerAm', 'dimer') core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERB, 'monomerBm', 'dimer') e_sapt = core.sapt(dimer_wfn, monomerAm_wfn, monomerBm_wfn) CTm = core.variable('SAPT CT ENERGY') CT = CTd - CTm units = (1000.0, constants.hartree2kcalmol, constants.hartree2kJmol) core.print_out('\n\n') core.print_out(' SAPT Charge Transfer Analysis\n') core.print_out(' ------------------------------------------------------------------------------------------------\n') core.print_out(' SAPT Induction (Dimer Basis) %12.4lf [mEh] %12.4lf [kcal/mol] %12.4lf [kJ/mol]\n' % tuple(CTd * u for u in units)) core.print_out(' SAPT Induction (Monomer Basis)%12.4lf [mEh] %12.4lf [kcal/mol] %12.4lf [kJ/mol]\n' % tuple(CTm * u for u in units)) core.print_out(' SAPT Charge Transfer %12.4lf [mEh] %12.4lf [kcal/mol] %12.4lf [kJ/mol]\n\n' % tuple(CT * u for u in units)) core.set_variable("SAPT CT ENERGY", CT) # P::e SAPT optstash.restore() return dimer_wfn def run_fisapt(name, **kwargs): """Function encoding sequence of PSI module calls for an F/ISAPT0 computation """ optstash = p4util.OptionsState(['SCF_TYPE']) # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') # Get the molecule of interest ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: sapt_dimer = kwargs.pop('molecule', core.get_active_molecule()) else: core.print_out('Warning! FISAPT argument "ref_wfn" is only able to use molecule information.') sapt_dimer = ref_wfn.molecule() sapt_dimer.update_geometry() # make sure since mol from wfn, kwarg, or P::e # Shifting to C1 so we need to copy the active molecule if sapt_dimer.schoenflies_symbol() != 'c1': core.print_out(' FISAPT does not make use of molecular symmetry, further calculations in C1 point group.\n') _ini_cart = getattr(sapt_dimer, "_initial_cartesian", None) sapt_dimer = sapt_dimer.clone() sapt_dimer.reset_point_group('c1') sapt_dimer.fix_orientation(True) sapt_dimer.fix_com(True) sapt_dimer.update_geometry() if _ini_cart: sapt_dimer._initial_cartesian = _ini_cart if core.get_option('SCF', 'REFERENCE') != 'RHF': raise ValidationError('FISAPT requires requires \"reference rhf\".') if ref_wfn is None: core.timer_on("FISAPT: Dimer SCF") ref_wfn = scf_helper('RHF', molecule=sapt_dimer, **kwargs) core.timer_off("FISAPT: Dimer SCF") core.print_out(" Constructing Basis Sets for FISAPT...\n\n") scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis) sapt_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SAPT", core.get_global_option("DF_BASIS_SAPT"), "RIFIT", core.get_global_option("BASIS"), ref_wfn.basisset().has_puream()) ref_wfn.set_basisset("DF_BASIS_SAPT", sapt_basis) minao = core.BasisSet.build(ref_wfn.molecule(), "BASIS", core.get_global_option("MINAO_BASIS")) ref_wfn.set_basisset("MINAO", minao) # Turn of dispersion for -d if "-d" in name.lower(): core.set_local_option("FISAPT", "FISAPT_DO_FSAPT_DISP", False) fisapt_wfn = core.FISAPT(ref_wfn) from .sapt import fisapt_proc fisapt_wfn.compute_energy(external_potentials=kwargs.get("external_potentials", None)) # Compute -D dispersion if "-d" in name.lower(): proc_util.sapt_empirical_dispersion(name, ref_wfn) optstash.restore() return ref_wfn def run_mrcc(name, **kwargs): """Function that prepares environment and input files for a calculation calling Kallay's MRCC code. """ from .proc_data import mrcc_methods # level is a dictionary of settings to be passed to core.mrcc try: level = mrcc_methods[name.lower()] except KeyError: if name.lower() == "a-ccsd(t)": level = mrcc_methods["ccsd(t)_l"] else: raise ValidationError(f"""MRCC method '{name}' invalid.""") # Check to see if we really need to run the SCF code. ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) vscf = ref_wfn.variable('SCF TOTAL ENERGY') # Fullname is the string we need to search for in iface fullname = level['fullname'] # User can provide 'keep' to the method. # When provided, do not delete the MRCC scratch directory. keep = False if 'keep' in kwargs: keep = kwargs['keep'] # Save current directory location current_directory = os.getcwd() # Find environment by merging PSIPATH and PATH environment variables lenv = { 'PATH': ':'.join([os.path.abspath(x) for x in os.environ.get('PSIPATH', '').split(':') if x != '']) + ':' + os.environ.get('PATH'), 'LD_LIBRARY_PATH': os.environ.get('LD_LIBRARY_PATH') } # Filter out None values as subprocess will fault on them lenv = {k: v for k, v in lenv.items() if v is not None} # Need to move to the scratch directory, perferrably into a separate directory in that location psi_io = core.IOManager.shared_object() os.chdir(psi_io.get_default_path()) # Make new directory specifically for mrcc mrcc_tmpdir = 'mrcc_' + str(os.getpid()) if 'path' in kwargs: mrcc_tmpdir = kwargs['path'] # Check to see if directory already exists, if not, create. if os.path.exists(mrcc_tmpdir) is False: os.mkdir(mrcc_tmpdir) # Move into the new directory os.chdir(mrcc_tmpdir) # Generate integrals and input file (dumps files to the current directory) if core.get_option('FNOCC', 'NAT_ORBS'): mints = core.MintsHelper(ref_wfn.basisset()) mints.set_print(1) mints.integrals() core.mrcc_generate_input(ref_wfn, level) ref_wfn.set_module("mrcc") # Load the fort.56 file # and dump a copy into the outfile core.print_out('\n===== Begin fort.56 input for MRCC ======\n') core.print_out(open('fort.56', 'r').read()) core.print_out('===== End fort.56 input for MRCC ======\n') # Modify the environment: # PGI Fortan prints warning to screen if STOP is used lenv['NO_STOP_MESSAGE'] = '1' # Obtain the number of threads MRCC should use lenv['OMP_NUM_THREADS'] = str(core.get_num_threads()) # If the user provided MRCC_OMP_NUM_THREADS set the environ to it if core.has_option_changed('MRCC', 'MRCC_OMP_NUM_THREADS'): lenv['OMP_NUM_THREADS'] = str(core.get_option('MRCC', 'MRCC_OMP_NUM_THREADS')) # Call dmrcc, directing all screen output to the output file external_exe = 'dmrcc' try: retcode = subprocess.Popen([external_exe], bufsize=0, stdout=subprocess.PIPE, env=lenv) except OSError as e: sys.stderr.write('Program %s not found in path or execution failed: %s\n' % (external_exe, e.strerror)) core.print_out('Program %s not found in path or execution failed: %s\n' % (external_exe, e.strerror)) message = ("Program %s not found in path or execution failed: %s\n" % (external_exe, e.strerror)) raise ValidationError(message) c4out = '' while True: data = retcode.stdout.readline() if not data: break core.print_out(data.decode('utf-8')) c4out += data.decode('utf-8') # Scan iface file and grab the file energy. ene = 0.0 for line in open('iface'): fields = line.split() m = fields[1] try: ene = float(fields[5]) if m == "MP(2)": m = "MP2" elif m == "CCSD[T]": m = "CCSD+T(CCSD)" elif m == "CCSD(T)_L": m = "A-CCSD(T)" ref_wfn.set_variable(m + ' TOTAL ENERGY', ene) ref_wfn.set_variable(m + ' CORRELATION ENERGY', ene - vscf) except ValueError: continue # The last 'ene' in iface is the one the user requested. ref_wfn.set_variable('CURRENT ENERGY', ene) ref_wfn.set_variable('CURRENT CORRELATION ENERGY', ene - vscf) for subm in ["MP2", "CCSD"]: if ref_wfn.has_variable(f"{subm} TOTAL ENERGY") and core.get_option("SCF", "REFERENCE") in ["RHF", "UHF"]: ref_wfn.set_variable(f"{subm} SINGLES ENERGY", 0.0) ref_wfn.set_variable(f"{subm} DOUBLES ENERGY", ref_wfn.variable(f"{subm} CORRELATION ENERGY")) if ref_wfn.has_variable("CCSD(T) CORRELATION ENERGY") and ref_wfn.has_variable("CCSD CORRELATION ENERGY"): ref_wfn.set_variable("(T) CORRECTION ENERGY", ref_wfn.variable("CCSD(T) CORRELATION ENERGY") - ref_wfn.variable("CCSD CORRELATION ENERGY")) if ref_wfn.has_variable("A-CCSD(T) CORRELATION ENERGY") and ref_wfn.has_variable("CCSD CORRELATION ENERGY"): ref_wfn.set_variable("A-(T) CORRECTION ENERGY", ref_wfn.variable("A-CCSD(T) CORRELATION ENERGY") - ref_wfn.variable("CCSD CORRELATION ENERGY")) # Load the iface file iface = open('iface', 'r') iface_contents = iface.read() # Delete mrcc tempdir os.chdir('..') try: # Delete unless we're told not to if (keep is False and not('path' in kwargs)): shutil.rmtree(mrcc_tmpdir) except OSError as e: print('Unable to remove MRCC temporary directory %s' % e, file=sys.stderr) exit(1) # Return to submission directory os.chdir(current_directory) # If we're told to keep the files or the user provided a path, do nothing. if keep or ('path' in kwargs): core.print_out('\nMRCC scratch files have been kept.\n') core.print_out('They can be found in ' + mrcc_tmpdir) # Dump iface contents to output core.print_out('\n') p4util.banner('Full results from MRCC') core.print_out('\n') core.print_out(iface_contents) # Shove variables into global space for k, v in ref_wfn.variables().items(): core.set_variable(k, v) core.print_variables() return ref_wfn def run_fnodfcc(name, **kwargs): """Function encoding sequence of PSI module calls for a [FNO-](DF|CD)-CCSD[(T)] computation. >>> set cc_type df >>> energy('fno-ccsd(t)') """ kwargs = p4util.kwargs_lower(kwargs) dtl = docs_table_link("dummy", "fnocc") # stash user options optstash = p4util.OptionsState( ['FNOCC', 'COMPUTE_TRIPLES'], ['FNOCC', 'DFCC'], ['FNOCC', 'NAT_ORBS'], ['FNOCC', 'RUN_CEPA'], ['FNOCC', 'DF_BASIS_CC'], ['SCF', 'DF_BASIS_SCF'], ['SCF', 'DF_INTS_IO']) def set_cholesky_from(type_val): if type_val == 'CD': core.set_local_option('FNOCC', 'DF_BASIS_CC', 'CHOLESKY') # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): optstash.add_option(['SCF_TYPE']) core.set_global_option('SCF_TYPE', 'CD') core.print_out(""" SCF Algorithm Type (re)set to CD.\n""") elif type_val in ['DISK_DF', 'DF']: if core.get_option('FNOCC', 'DF_BASIS_CC') == 'CHOLESKY': core.set_local_option('FNOCC', 'DF_BASIS_CC', '') proc_util.check_disk_df(name.upper(), optstash) else: raise ValidationError(f"Invalid type {type_val} for FNOCC energy through `run_fnodfcc`. See Capabilities Table at {dtl}") director = { # Note "nat_orbs" not set defensively False for non-"fno" calls "ccsd": { "dfcc": True, "run_cepa": False, "compute_triples": False,}, "fno-ccsd": {"nat_orbs": True, "dfcc": True, "run_cepa": False, "compute_triples": False,}, "ccsd(t)": { "dfcc": True, "run_cepa": False, "compute_triples": True, }, "fno-ccsd(t)": {"nat_orbs": True, "dfcc": True, "run_cepa": False, "compute_triples": True, }, } if name not in director: raise ValidationError(f"Invalid method {name} for FNOCC energy") # throw exception for open-shells if (ref := core.get_option("SCF", "REFERENCE")) != "RHF": raise ValidationError(f"Invalid reference type {ref} != RHF for FNOCC energy. See Capabilities Table at {dtl}.") # throw exception for CONV (approximately). after defaulting logic, throw exception for SCF_TYPE CONV (approximately) set_cholesky_from(method_algorithm_type(name).now) if (scf_type := core.get_global_option("SCF_TYPE")) not in ["CD", "DISK_DF"]: raise ValidationError(f"Invalid {scf_type=} for FNOCC energy through `run_fnodfcc`. See Capabilities Table at {dtl}") for k, v in director[name].items(): core.set_local_option("FNOCC", k.upper(), v) # save DF or CD ints generated by SCF for use in CC core.set_local_option('SCF', 'DF_INTS_IO', 'SAVE') ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, use_c1=True, **kwargs) # C1 certified else: if ref_wfn.molecule().schoenflies_symbol() != 'c1': raise ValidationError(""" FNOCC does not make use of molecular symmetry: """ """reference wavefunction must be C1.\n""") core.print_out(" Constructing Basis Sets for FNOCC...\n\n") scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis) aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_CC", core.get_global_option("DF_BASIS_CC"), "RIFIT", core.get_global_option("BASIS")) ref_wfn.set_basisset("DF_BASIS_CC", aux_basis) if core.get_global_option("RELATIVISTIC") in ["X2C", "DKH"]: rel_bas = core.BasisSet.build(ref_wfn.molecule(), "BASIS_RELATIVISTIC", core.get_option("SCF", "BASIS_RELATIVISTIC"), "DECON", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset('BASIS_RELATIVISTIC',rel_bas) fnocc_wfn = core.fnocc(ref_wfn) # Shove variables into global space for k, v in fnocc_wfn.variables().items(): core.set_variable(k, v) optstash.restore() return fnocc_wfn def run_fnocc(name, **kwargs): """Function encoding sequence of PSI module calls for a QCISD(T), CCSD(T), MP2.5, MP3, and MP4 computation. >>> energy('fno-ccsd(t)') """ kwargs = p4util.kwargs_lower(kwargs) dtl = docs_table_link("dummy", "fnocc") # stash user options: optstash = p4util.OptionsState( ['TRANSQT2', 'WFN'], ['FNOCC', 'RUN_MP2'], ['FNOCC', 'RUN_MP3'], ['FNOCC', 'RUN_MP4'], ['FNOCC', 'RUN_CCSD'], ['FNOCC', 'COMPUTE_TRIPLES'], ['FNOCC', 'COMPUTE_MP4_TRIPLES'], ['FNOCC', 'DFCC'], ['FNOCC', 'RUN_CEPA'], ['FNOCC', 'USE_DF_INTS'], ['FNOCC', 'NAT_ORBS']) # AED reinforces default core.set_local_option('FNOCC', 'USE_DF_INTS', False) if name in ["mp3", "fno-mp3"] and not core.has_global_option_changed("MP_TYPE"): core.print_out(f" Information: {name.upper()} default algorithm changed to DF in August 2020. Use `set mp_type conv` for previous behavior.\n") director = { # Note "nat_orbs" not set defensively False for non-"fno" calls "mp2": { "dfcc": False, "run_cepa": False, "run_mp2": True, }, "mp3": { "dfcc": False, "run_cepa": False, "run_mp3": True, }, "fno-mp3": {"nat_orbs": True, "dfcc": False, "run_cepa": False, "run_mp3": True, }, "mp4(sdq)": { "dfcc": False, "run_cepa": False, "compute_triples": False, "run_mp4": True, "compute_mp4_triples": False,}, "fno-mp4(sdq)": {"nat_orbs": True, "dfcc": False, "run_cepa": False, "compute_triples": False, "run_mp4": True, "compute_mp4_triples": False,}, "mp4": { "dfcc": False, "run_cepa": False, "compute_triples": True, "run_mp4": True, "compute_mp4_triples": True, }, "fno-mp4": {"nat_orbs": True, "dfcc": False, "run_cepa": False, "compute_triples": True, "run_mp4": True, "compute_mp4_triples": True, }, "qcisd": { "dfcc": False, "run_cepa": False, "run_ccsd": False, "compute_triples": False, }, "fno-qcisd": {"nat_orbs": True, "dfcc": False, "run_cepa": False, "run_ccsd": False, "compute_triples": False, }, "qcisd(t)": { "dfcc": False, "run_cepa": False, "run_ccsd": False, "compute_triples": True, }, "fno-qcisd(t)": {"nat_orbs": True, "dfcc": False, "run_cepa": False, "run_ccsd": False, "compute_triples": True, }, "ccsd": { "dfcc": False, "run_cepa": False, "run_ccsd": True, "compute_triples": False, }, "fno-ccsd": {"nat_orbs": True, "dfcc": False, "run_cepa": False, "run_ccsd": True, "compute_triples": False, }, "ccsd(t)": { "dfcc": False, "run_cepa": False, "run_ccsd": True, "compute_triples": True, }, "fno-ccsd(t)": {"nat_orbs": True, "dfcc": False, "run_cepa": False, "run_ccsd": True, "compute_triples": True, }, } if name not in director: raise ValidationError(f"Invalid method {name} for FNOCC energy") # throw exception for open-shells if (ref := core.get_option("SCF", "REFERENCE")) != "RHF": raise ValidationError(f"Invalid reference type {ref} != RHF for FNOCC energy. See Capabilities Table at {dtl}") # throw exception for DF/CD. most of these pre-trapped by select_* functions but some escape, incl. mp4(sdq) and qcisd variants if (corl_type := method_algorithm_type(name).now) != "CONV": raise ValidationError(f"Invalid type {corl_type} for FNOCC energy through `run_fnocc`. See Capabilities Table at {dtl}") for k, v in director[name].items(): core.set_local_option("FNOCC", k.upper(), v) # Bypass the scf call if a reference wavefunction is given ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # C1 certified if not core.get_option('FNOCC', 'USE_DF_INTS'): # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) else: core.print_out(" Constructing Basis Sets for FNOCC...\n\n") scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis) if core.get_global_option("RELATIVISTIC") in ["X2C", "DKH"]: rel_bas = core.BasisSet.build(ref_wfn.molecule(), "BASIS_RELATIVISTIC", core.get_option("SCF", "BASIS_RELATIVISTIC"), "DECON", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset('BASIS_RELATIVISTIC',rel_bas) fnocc_wfn = core.fnocc(ref_wfn) # set current correlation energy and total energy. only need to treat mpn here. if (lbl := name.replace("fno-", "")) in ["mp3", "mp4(sdq)", "mp4"]: fnocc_wfn.set_variable("CURRENT ENERGY", fnocc_wfn.variable(f"{lbl.upper()} TOTAL ENERGY")) fnocc_wfn.set_variable("CURRENT CORRELATION ENERGY", fnocc_wfn.variable(f"{lbl.upper()} CORRELATION ENERGY")) if lbl == "mp4": fnocc_wfn.set_variable("MP4 CORRECTION ENERGY", fnocc_wfn.variable("MP4 CORRELATION ENERGY") - fnocc_wfn.variable("MP3 CORRELATION ENERGY")) # Shove variables into global space for k, v in fnocc_wfn.variables().items(): core.set_variable(k, v) optstash.restore() return fnocc_wfn def run_cepa(name, **kwargs): """Function encoding sequence of PSI module calls for a cepa-like calculation. >>> energy('cepa(1)') """ kwargs = p4util.kwargs_lower(kwargs) dtl = docs_table_link("dummy", "fnocc") # save user options optstash = p4util.OptionsState( ['TRANSQT2', 'WFN'], ['FNOCC', 'NAT_ORBS'], ['FNOCC', 'DFCC'], ['FNOCC', 'RUN_CEPA'], ['FNOCC', 'USE_DF_INTS'], ['FNOCC', 'CEPA_LEVEL'], ['FNOCC', 'CEPA_NO_SINGLES']) # AED reinforces default core.set_local_option('FNOCC', 'USE_DF_INTS', False) director = { # Note "nat_orbs" not set defensively False for non-"fno" calls "lccd": { "dfcc": False, "run_cepa": True, "cepa_level": "cepa(0)", "cepa_no_singles": True, }, "fno-lccd": {"nat_orbs": True, "dfcc": False, "run_cepa": True, "cepa_level": "cepa(0)", "cepa_no_singles": True, }, "lccsd": { "dfcc": False, "run_cepa": True, "cepa_level": "cepa(0)", "cepa_no_singles": False,}, "fno-lccsd": {"nat_orbs": True, "dfcc": False, "run_cepa": True, "cepa_level": "cepa(0)", "cepa_no_singles": False,}, "cepa(0)": { "dfcc": False, "run_cepa": True, "cepa_level": "cepa(0)", "cepa_no_singles": False,}, "fno-cepa(0)": {"nat_orbs": True, "dfcc": False, "run_cepa": True, "cepa_level": "cepa(0)", "cepa_no_singles": False,}, "cepa(1)": { "dfcc": False, "run_cepa": True, "cepa_level": "cepa(1)", "cepa_no_singles": False,}, "fno-cepa(1)": {"nat_orbs": True, "dfcc": False, "run_cepa": True, "cepa_level": "cepa(1)", "cepa_no_singles": False,}, "cepa(3)": { "dfcc": False, "run_cepa": True, "cepa_level": "cepa(3)", "cepa_no_singles": False,}, "fno-cepa(3)": {"nat_orbs": True, "dfcc": False, "run_cepa": True, "cepa_level": "cepa(3)", "cepa_no_singles": False,}, "acpf": { "dfcc": False, "run_cepa": True, "cepa_level": "acpf", "cepa_no_singles": False,}, "fno-acpf": {"nat_orbs": True, "dfcc": False, "run_cepa": True, "cepa_level": "acpf", "cepa_no_singles": False,}, "aqcc": { "dfcc": False, "run_cepa": True, "cepa_level": "aqcc", "cepa_no_singles": False,}, "fno-aqcc": {"nat_orbs": True, "dfcc": False, "run_cepa": True, "cepa_level": "aqcc", "cepa_no_singles": False,}, "cisd": { "dfcc": False, "run_cepa": True, "cepa_level": "cisd", "cepa_no_singles": False,}, "fno-cisd": {"nat_orbs": True, "dfcc": False, "run_cepa": True, "cepa_level": "cisd", "cepa_no_singles": False,}, } if name not in director: raise ValidationError(f"Invalid method {name} for FNOCC energy") # throw exception for open-shells if (ref := core.get_option("SCF", "REFERENCE")) != "RHF": raise ValidationError(f"Invalid reference type {ref} != RHF for FNOCC energy. See Capabilities Table at {dtl}") # throw exception for DF/CD. some of these pre-trapped by select_* functions but others escape, incl. cepa variants if (corl_type := method_algorithm_type(name).now) != "CONV": raise ValidationError(f"Invalid type {corl_type} for FNOCC energy through `run_cepa`. See Capabilities Table at {dtl}") for k, v in director[name].items(): core.set_local_option("FNOCC", k.upper(), v) ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_wfn = scf_helper(name, **kwargs) # C1 certified if not core.get_option('FNOCC', 'USE_DF_INTS'): # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) else: core.print_out(" Constructing Basis Sets for FISAPT...\n\n") scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis) fnocc_wfn = core.fnocc(ref_wfn) # one-electron properties cepa_level = director[name]["cepa_level"] if core.get_option('FNOCC', 'DIPMOM'): if cepa_level in ['cepa(1)', 'cepa(3)']: core.print_out("""\n Error: one-electron properties not implemented for %s\n\n""" % name) elif core.get_option('FNOCC', 'NAT_ORBS'): core.print_out("""\n Error: one-electron properties not implemented for %s\n\n""" % name) else: p4util.oeprop(fnocc_wfn, 'DIPOLE', 'QUADRUPOLE', 'MULLIKEN_CHARGES', 'NO_OCCUPATIONS', title=cepa_level.upper()) # Shove variables into global space for k, v in fnocc_wfn.variables().items(): core.set_variable(k, v) optstash.restore() return fnocc_wfn def run_detcas(name, **kwargs): """Function encoding sequence of PSI module calls for determinant-based multireference wavefuncations, namely CASSCF and RASSCF. """ optstash = p4util.OptionsState( ['DETCI', 'WFN'], ['SCF_TYPE'], ['ONEPDM'], ['OPDM_RELAX'] ) user_ref = core.get_option('DETCI', 'REFERENCE') if user_ref not in ['RHF', 'ROHF']: raise ValidationError('Reference %s for DETCI is not available.' % user_ref) if name == 'rasscf': core.set_local_option('DETCI', 'WFN', 'RASSCF') elif name == 'casscf': core.set_local_option('DETCI', 'WFN', 'CASSCF') else: raise ValidationError("Run DETCAS: Name %s not understood" % name) ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: ref_optstash = p4util.OptionsState( ['SCF_TYPE'], ['DF_BASIS_SCF'], ['DF_BASIS_MP2'], ['ONEPDM'], ['OPDM_RELAX'] ) # No real reason to do a conventional guess if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') # If RHF get MP2 NO's # Why doesnt this work for conv? if (('DF' in core.get_global_option('SCF_TYPE')) and (user_ref == 'RHF') and (core.get_option('DETCI', 'MCSCF_TYPE') in ['DF', 'AO']) and (core.get_option("DETCI", "MCSCF_GUESS") == "MP2")): core.set_global_option('ONEPDM', True) core.set_global_option('OPDM_RELAX', False) ref_wfn = run_dfmp2_gradient(name, **kwargs) else: ref_wfn = scf_helper(name, **kwargs) # Ensure IWL files have been written if (core.get_option('DETCI', 'MCSCF_TYPE') == 'CONV'): mints = core.MintsHelper(ref_wfn.basisset()) mints.set_print(1) mints.integrals() ref_optstash.restore() # The DF case if core.get_option('DETCI', 'MCSCF_TYPE') == 'DF': if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') core.print_out(" Constructing Basis Sets for MCSCF...\n\n") scf_aux_basis = core.BasisSet.build(ref_wfn.molecule(), "DF_BASIS_SCF", core.get_option("SCF", "DF_BASIS_SCF"), "JKFIT", core.get_global_option('BASIS'), puream=ref_wfn.basisset().has_puream()) ref_wfn.set_basisset("DF_BASIS_SCF", scf_aux_basis) # The AO case elif core.get_option('DETCI', 'MCSCF_TYPE') == 'AO': if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DIRECT') # The conventional case elif core.get_option('DETCI', 'MCSCF_TYPE') == 'CONV': if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'PK') # Ensure IWL files have been written proc_util.check_iwl_file_from_scf_type(core.get_global_option('SCF_TYPE'), ref_wfn) else: raise ValidationError("Run DETCAS: MCSCF_TYPE %s not understood." % str(core.get_option('DETCI', 'MCSCF_TYPE'))) # Second-order SCF requires non-symmetric density matrix support if core.get_option('DETCI', 'MCSCF_ALGORITHM') in ['AH', 'OS']: proc_util.check_non_symmetric_jk_density("Second-order MCSCF") ciwfn = mcscf.mcscf_solver(ref_wfn) # We always would like to print a little dipole information oeprop = core.OEProp(ciwfn) oeprop.set_title(name.upper()) oeprop.add("DIPOLE") oeprop.compute() ciwfn.oeprop = oeprop core.set_variable("CURRENT DIPOLE", core.variable(name.upper() + " DIPOLE")) # Shove variables into global space for k, v in ciwfn.variables().items(): core.set_variable(k, v) optstash.restore() return ciwfn def run_efp(name, **kwargs): """Function encoding sequence of module calls for a pure EFP computation (ignore any QM atoms). """ efp_molecule = kwargs.get('molecule', core.get_active_molecule()) try: efpobj = efp_molecule.EFP except AttributeError: raise ValidationError("""Method 'efp' not available without EFP fragments in molecule""") # print efp geom in [A] core.print_out(efpobj.banner()) core.print_out(efpobj.geometry_summary(units_to_bohr=constants.bohr2angstroms)) # set options # * 'chtr', 'qm_exch', 'qm_disp', 'qm_chtr' may be enabled in a future libefp release efpopts = {} for opt in ['elst', 'exch', 'ind', 'disp', 'elst_damping', 'ind_damping', 'disp_damping']: psiopt = 'EFP_' + opt.upper() if core.has_option_changed('EFP', psiopt): efpopts[opt] = core.get_option('EFP', psiopt) efpopts['qm_elst'] = False efpopts['qm_ind'] = False efpobj.set_opts(efpopts, label='psi', append='psi') do_gradient = core.get_option('EFP', 'DERTYPE') == 'FIRST' # compute and report efpobj.compute(do_gradient=do_gradient) core.print_out(efpobj.energy_summary(label='psi')) ene = efpobj.get_energy(label='psi') core.set_variable('EFP ELST ENERGY', ene['electrostatic'] + ene['charge_penetration'] + ene['electrostatic_point_charges']) core.set_variable('EFP IND ENERGY', ene['polarization']) core.set_variable('EFP DISP ENERGY', ene['dispersion']) core.set_variable('EFP EXCH ENERGY', ene['exchange_repulsion']) core.set_variable('EFP TOTAL ENERGY', ene['total']) core.set_variable('CURRENT ENERGY', ene['total']) if do_gradient: core.print_out(efpobj.gradient_summary()) torq = efpobj.get_gradient() torq = core.Matrix.from_array(np.asarray(torq).reshape(-1, 6)) core.set_variable("EFP TORQUE", torq) # P::e EFP return ene['total']